Key agreement schemes based on linear groupoids
Matematičeskie voprosy kriptografii, Tome 8 (2017) no. 1, pp. 7-12
Cet article a éte moissonné depuis la source Math-Net.Ru
Authors present a study of the possibility to use special class of nonassociative groupoids (called linear) for the implementation of a key exchange protocol based on a generalization of Diffie–Hellmann algorithm. The necessity to use the power commutation and effective power calculation properties is proved. A specific example of linear groupoid over the elliptic curve is described.
@article{MVK_2017_8_1_a1,
author = {A. V. Baryshnikov and S. Yu. Katyshev},
title = {Key agreement schemes based on linear groupoids},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {7--12},
year = {2017},
volume = {8},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MVK_2017_8_1_a1/}
}
A. V. Baryshnikov; S. Yu. Katyshev. Key agreement schemes based on linear groupoids. Matematičeskie voprosy kriptografii, Tome 8 (2017) no. 1, pp. 7-12. http://geodesic.mathdoc.fr/item/MVK_2017_8_1_a1/
[1] Discrete Math. Appl., 25:1 (2015), 9–24 | DOI | DOI | MR | Zbl
[2] Discrete Math. Appl., 19:2 (2009), 173–190 | DOI | DOI | MR | MR | Zbl
[3] Diffie W., Hellman M. E., “New directions in cryptography”, IEEE Trans. Inf. Theory, 22:6 (1976), 644–654 | DOI | MR | Zbl
[4] Hellman M., “A cryptanalytic time-memory trade-off”, IEEE Trans. Inf. Theory, 26:4 (1980), 401–406 | DOI | MR | Zbl
[5] Silverman J., The Arithmetic of the Elliptic Curves, Springer, Heidelberg etc., 1986 | MR | Zbl