Weight deficits of involutions and substitutions
Matematičeskie voprosy kriptografii, Tome 7 (2016) no. 4, pp. 95-116
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $E_{2^m}$ be an ordered additive group of the finite field with $2^m$ elements. For the substitution $S: E_{2^m}\to E_{2^m}$ we introduce and investigate the index of the weight deficit of involution corresponding to the substitution $S$. By means of this index the security of $S$-boxes against the differential method of cryptoanalysis may be estimated. Some enumeration algorithms for involutions with given values of weight deficits are described.
@article{MVK_2016_7_4_a6,
author = {V. N. Sachkov and I. A. Kruglov},
title = {Weight deficits of involutions and substitutions},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {95--116},
year = {2016},
volume = {7},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MVK_2016_7_4_a6/}
}
V. N. Sachkov; I. A. Kruglov. Weight deficits of involutions and substitutions. Matematičeskie voprosy kriptografii, Tome 7 (2016) no. 4, pp. 95-116. http://geodesic.mathdoc.fr/item/MVK_2016_7_4_a6/
[1] Sachkov V. N., “Kombinatornye svoistva differentsialno 2-ravnomernykh podstanovok”, Matematicheskie voprosy kriptografii, 6:1 (2015), 159–180
[2] Sachkov V. N., Kurs kombinatornogo analiza, NITs «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2013, 336 pp.
[3] Sachkov V. N., “Tsepi Markova iteratsionnykh sistem preobrazovanii”, Trudy po diskretnoi matematike, 6 (2002), 165–183
[4] Riordan Dzh., Vvedenie v kombinatornyi analiz, IL, M., 1963, 287 pp.
[5] Sachkov V. N., Kombinatornye metody diskretnoi matematiki, Nauka, M., 1977, 319 pp.