Lower estimates of ranks of coordinate sequences of maximal period linear recurrent sequences over the non-trivial Galois ring
Matematičeskie voprosy kriptografii, Tome 7 (2016) no. 3, pp. 137-143 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Galois ring is called non-trivial if it is not a field and a residue ring. For the maximal period linear recurrent sequence over the non-trivial Galois ring $R=GR(q^n,p^n)$, $p\ge5$, new lower estimates of ranks of coordinate sequences with numbers $s$ such that $s=kr+2$, $r=\lg_pq$, $k\in\mathbb N_0$ are obtained.
@article{MVK_2016_7_3_a8,
     author = {V. N. Tsypyshev},
     title = {Lower estimates of ranks of coordinate sequences of maximal period linear recurrent sequences over the non-trivial {Galois} ring},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {137--143},
     year = {2016},
     volume = {7},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2016_7_3_a8/}
}
TY  - JOUR
AU  - V. N. Tsypyshev
TI  - Lower estimates of ranks of coordinate sequences of maximal period linear recurrent sequences over the non-trivial Galois ring
JO  - Matematičeskie voprosy kriptografii
PY  - 2016
SP  - 137
EP  - 143
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2016_7_3_a8/
LA  - ru
ID  - MVK_2016_7_3_a8
ER  - 
%0 Journal Article
%A V. N. Tsypyshev
%T Lower estimates of ranks of coordinate sequences of maximal period linear recurrent sequences over the non-trivial Galois ring
%J Matematičeskie voprosy kriptografii
%D 2016
%P 137-143
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2016_7_3_a8/
%G ru
%F MVK_2016_7_3_a8
V. N. Tsypyshev. Lower estimates of ranks of coordinate sequences of maximal period linear recurrent sequences over the non-trivial Galois ring. Matematičeskie voprosy kriptografii, Tome 7 (2016) no. 3, pp. 137-143. http://geodesic.mathdoc.fr/item/MVK_2016_7_3_a8/

[1] Bylkov D. N., “Vtoraya koordinatnaya posledovatelnost lineinoi rekurrenty maksimalnogo perioda nad koltsom $\mathbb Z_8$”, Problemy diskretn. matem. Prilozhenie, 2013, no. 6, 9–10

[2] Kurakin V. L., “Pervaya koordinatnaya posledovatelnost lineinoi rekurrenty maksimalnogo perioda nad koltsom Galua”, Diskretnaya matematika, 6:2 (1994), 88–100 | MR | Zbl

[3] Nechaev A. A., “Kod Kerdoka v tsiklicheskoi forme”, Diskretnaya matematika, 1:4 (1989), 123–139 | MR | Zbl

[4] Nechaev A. A., “Lineinye rekurrentnye posledovatelnosti nad kommutativnymi koltsami”, Diskretnaya matematika, 3:4 (1991), 105–127 | MR | Zbl

[5] Nechaev A. A., “Tsiklovye tipy lineinykh podstanovok nad konechnymi kommutativnymi koltsami”, Matem. sbornik, 184:4 (1993), 21–56 | MR | Zbl

[6] Sachkov V. N., Vvedenie v kombinatornye metody diskretnoi matematiki, Nauka, M., 1982, 384 pp. | MR

[7] Tsypyshev V. N., “Vtoraya koordinatnaya posledovatelnost lineinoi rekurrenty maksimalnogo perioda nad sobstvennym koltsom Galua nechetnoi kharakteristiki”, Diskretnaya matematika, 28:1 (2016), 123–149 | DOI | MR

[8] Helleseth T., Martinsen M., “Binary sequences of period $2^m-1$ with large linear complexity”, Inf. and Comput., 151 (1999), 73–91 | DOI | MR | Zbl

[9] Kurakin V. L., Mikhalev A. V., Nechaev A. A., Tsypyschev V. N., “Linear and polylinear recurring sequences over Abelian groups and modules”, J. Math. Sci., 102:6 (2000), 4598–4626 | MR | Zbl

[10] Kuzmin A. S., Nechaev A. A., “Linear recurrent sequences over Galois rings”, Contemporary Math., 184 (1995), 237–254 | DOI | MR | Zbl

[11] McDonald C., Finite rings with identity, Marcel Dekker, New York, 1974, 495 pp. | MR | Zbl

[12] Radghavendran R., “A class of finite rings”, Compositio Math., 22:1 (1970), 49–57 | MR

[13] Tsypyschev V. N., “Rank estimations of the second coordinate sequence of MP-LRS over nontrivial Galois ring of odd characteristic”, Proc. II Int. Sci. Conf. on Problems of Security and Counter-Terrorism Activity, MCCME, Moscow, 2007, 287–289 (In Russian)

[14] Tsypyschev V. N., Second coordinate sequence of the MP-LRS over nontrivial Galois ring of odd characteristic, , 2015 http://eprint.iacr.org/2015/1030