Three approaches to the notion of functions maximally differing from homomorphisms
Matematičeskie voprosy kriptografii, Tome 7 (2016) no. 3, pp. 115-136 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider three approaches to the notion of functions (mappings) from a finite group into a finite group which are maximally differing from homomorphisms. These approaches are based on the notion “functions closeness” which is an alternative to the notion “Hamming distance between functions”. The notions of absolute nonhomomorphity of the function, minimal closeness of function to homomorphisms and of bent-function are generalized and studied.
@article{MVK_2016_7_3_a7,
     author = {V. I. Solodovnikov},
     title = {Three approaches to the notion of functions maximally differing from homomorphisms},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {115--136},
     year = {2016},
     volume = {7},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2016_7_3_a7/}
}
TY  - JOUR
AU  - V. I. Solodovnikov
TI  - Three approaches to the notion of functions maximally differing from homomorphisms
JO  - Matematičeskie voprosy kriptografii
PY  - 2016
SP  - 115
EP  - 136
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2016_7_3_a7/
LA  - ru
ID  - MVK_2016_7_3_a7
ER  - 
%0 Journal Article
%A V. I. Solodovnikov
%T Three approaches to the notion of functions maximally differing from homomorphisms
%J Matematičeskie voprosy kriptografii
%D 2016
%P 115-136
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2016_7_3_a7/
%G ru
%F MVK_2016_7_3_a7
V. I. Solodovnikov. Three approaches to the notion of functions maximally differing from homomorphisms. Matematičeskie voprosy kriptografii, Tome 7 (2016) no. 3, pp. 115-136. http://geodesic.mathdoc.fr/item/MVK_2016_7_3_a7/

[1] Ambrosimov A. S., “Svoistva bent-funktsii $q$-znachnoi logiki nad konechnymi polyami”, Diskretnaya matematika, 6:3 (1994), 50–60 | MR | Zbl

[2] Golomb S. W., “On the classification of Boolean functions”, IRE Trans. Circuit Theory, 1:6 (1959), 10–27 | MR

[3] Kuzmin A. S., Nechaev A. A., Shishkin V. A., “Bent- i giperbent-funktsii nad konechnym polem”, Trudy po diskretnoi matematike, 10, 2007, 97–122

[4] Kumar P. V., Scholts R. A., Welch L. R., “Generalized bent functions and their properties”, J. Comb. Theory Ser. A, 40:1 (1985), 90–107 | DOI | MR | Zbl

[5] Kertis Ch., Rainer I., Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Izdatelstvo “Nauka”, M., 1969, 668 pp. | MR

[6] Logachev O. A., Salnikov A. A., Yaschenko V. V., “Bent-funktsii na konechnoi abelevoi gruppe”, Diskretnaya matematika, 9:4 (1997), 3–20 | DOI | MR | Zbl

[7] Nyberg K., “Perfect nonlinear $S$-boxes”, Lect. Notes Comput. Sci., 547, 1991, 378–386 | DOI | MR | Zbl

[8] Pott A., “Nonlinear functions in abelian groups and relative difference sets”, Discrete Applied Mathematics, 138 (2004), 177–193 | DOI | MR | Zbl

[9] Rothaus O. S., “On “bent” functions”, J. Comb. Theory Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl

[10] Solodovnikov V. I., “Bent-funktsii iz konechnoi abelevoi gruppy v konechnuyu abelevu gruppu”, Diskretnaya matematika, 14:1 (2002), 99–113 | DOI | MR | Zbl

[11] Solodovnikov V. I., “O primarnykh funktsiyakh, minimalno blizkikh k lineinym”, Matematicheskie voprosy kriptografii, 2:4 (2011), 97–108

[12] Solodovnikov V. I., “O sovpadenii klassa bent-funktsii s klassom funktsii, minimalno blizkikh k lineinym”, Prikladnaya diskretnaya matematika, 2012, no. 3, 25–33

[13] Tokareva N. N., Nelineinye bulevy funktsii: bent-funktsii i ikh obobscheniya, LAP LAMBERT Academic Publishing, Saarbrucken, Germany, 2011, 180 pp.