On a method for constructing low-weight Boolean functions without majorants of the given number of variables
Matematičeskie voprosy kriptografii, Tome 7 (2016) no. 3, pp. 73-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of constructing Boolean functions without majorants of $k$ variables is reduced to the construction of a set $M$ of Boolean functions of $k-1$ variables such that for any different vectors $\overline\beta_1,\dots,\overline\beta_k\in V_{k-1}$ and for any $\alpha_1,\dots,\alpha_k\in\{0,1\}$ there exists a function $f\in M\colon f(\overline\beta_1)=\alpha_1,\dots,f(\overline\beta_k)=\alpha_k$. This approach permits to construct functions f of small weight having no $k-1$ variable majorants. Several families of such Boolean functions $f$ are constructed.
@article{MVK_2016_7_3_a5,
     author = {P. V. Roldugin},
     title = {On a~method for constructing low-weight {Boolean} functions without majorants of the given number of variables},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {73--92},
     year = {2016},
     volume = {7},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2016_7_3_a5/}
}
TY  - JOUR
AU  - P. V. Roldugin
TI  - On a method for constructing low-weight Boolean functions without majorants of the given number of variables
JO  - Matematičeskie voprosy kriptografii
PY  - 2016
SP  - 73
EP  - 92
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2016_7_3_a5/
LA  - ru
ID  - MVK_2016_7_3_a5
ER  - 
%0 Journal Article
%A P. V. Roldugin
%T On a method for constructing low-weight Boolean functions without majorants of the given number of variables
%J Matematičeskie voprosy kriptografii
%D 2016
%P 73-92
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2016_7_3_a5/
%G ru
%F MVK_2016_7_3_a5
P. V. Roldugin. On a method for constructing low-weight Boolean functions without majorants of the given number of variables. Matematičeskie voprosy kriptografii, Tome 7 (2016) no. 3, pp. 73-92. http://geodesic.mathdoc.fr/item/MVK_2016_7_3_a5/

[1] Roldugin P. V., Tarasov A. V., “O bulevykh funktsiyakh bez verkhnikh biyunktivnykh statanalogov”, Matematicheskie voprosy kriptografii, 4:1 (2013), 111–128

[2] Roldugin P. V., Tarasov A. V., “Funktsii bez korotkikh implitsent. Chast I: nizhnie otsenki vesov”, Diskretnaya matematika, 27:2 (2015), 94–105 | DOI | MR

[3] Roldugin P. V., Tarasov A. V., “Funktsii bez korotkikh implitsent. Chast II: metody postroeniya”, Diskretnaya matematika, 27:4 (2015), 120–132 | DOI | MR

[4] Raigorodskii A. M., Sistemy obschikh predstavitelei i ikh prilozheniya v geometrii, MTsNMO, M., 2009, 136 pp.

[5] Logachev O. A., Salnikov A. A., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MTsNMO, M., 2004, 470 pp. | MR

[6] Glukhov M. M., Shishkov A. B., Matematicheskaya logika. Diskretnye funktsii. Teoriya algoritmov, Lan, SPb, 2012, 400 pp.

[7] Birkgof G., Teoriya reshetok, Nauka, M., 1984, 568 pp. | MR

[8] Sachkov V. N., Tarakanov V. E., Kombinatorika neotritsatelnykh matrits, TVP, M., 2000, 448 pp. | MR