Diffusion properties of XSLP-ciphers
Matematičeskie voprosy kriptografii, Tome 7 (2016) no. 3, pp. 47-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain an exact lower estimate for the number of local permutations in XSLP-cipher with an arbitrary number of rounds. The sum of linear probabilistic relations of these permutations forms the linear probabilistic relation connecting the bits of the plain text and that of the cipher text. In the considered ciphers the matrices $L$ of linear transformations are block-diagonal with maximally diffusive blocks and permutations $P$ are uniformly diffusive.
@article{MVK_2016_7_3_a3,
     author = {F. M. Malyshev and D. I. Trifonov},
     title = {Diffusion properties of {XSLP-ciphers}},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {47--60},
     year = {2016},
     volume = {7},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2016_7_3_a3/}
}
TY  - JOUR
AU  - F. M. Malyshev
AU  - D. I. Trifonov
TI  - Diffusion properties of XSLP-ciphers
JO  - Matematičeskie voprosy kriptografii
PY  - 2016
SP  - 47
EP  - 60
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2016_7_3_a3/
LA  - ru
ID  - MVK_2016_7_3_a3
ER  - 
%0 Journal Article
%A F. M. Malyshev
%A D. I. Trifonov
%T Diffusion properties of XSLP-ciphers
%J Matematičeskie voprosy kriptografii
%D 2016
%P 47-60
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2016_7_3_a3/
%G ru
%F MVK_2016_7_3_a3
F. M. Malyshev; D. I. Trifonov. Diffusion properties of XSLP-ciphers. Matematičeskie voprosy kriptografii, Tome 7 (2016) no. 3, pp. 47-60. http://geodesic.mathdoc.fr/item/MVK_2016_7_3_a3/

[1] Daemen J., Cipher and hash function design strategies based on linear and differential cryptoanalysis, Doct. Diss., K. U. Leuven, 1995

[2] Daemen J., Rijmen V., The Design of Rijndael: AES – The Advanced Encryption Standard, Springer, Heidelberg etc., 2002 | MR | Zbl

[3] Rijmen V., Cryptanalysis and design of iterated block ciphers, Doct. Diss., K. U. Leuven, 1997

[4] Shennon K., Raboty po teorii informatsii i kibernetike, IL, M., 1963

[5] Diffi U., Khellman M. E., “Zaschischënnost i imitostoikost: Vvedenie v kriptografiyu”, TIIER, 67:3 (1979), 71–109

[6] Messi Dzh. L., “Vvedenie v sovremennuyu kriptologiyu”, TIIER, 76:5 (1988), 24–42

[7] Khoffman L. Dzh., Sovremennye metody zaschity informatsii, Sovetskoe radio, M., 1980

[8] Shnaier B., Prikladnaya kriptografiya, TRIUMF, M., 2003

[9] Malyshev F. M., Tarakanov V. E., “Obobschënnye grafy de Breina”, Matem. zametki, 62:4 (1997), 540–548 | DOI | MR | Zbl

[10] Matsui M., “Linear Cryptoanalysis Method for DES Cipher”, Lect. Notes Comput. Sci., 765, 1994, 24–27

[11] Biham E., Shamir A., “Differential cryptoanalysis of DES-like cryptosystem”, Lect. Notes Comput. Sci., 537, 1991, 2–21 | DOI | MR | Zbl

[12] Malyshev F. M., “Dvoistvennost raznostnogo i lineinogo metodov v kriptografii”, Matematicheskie voprosy kriptografii, 5:3 (2014), 35–47

[13] Matsui M., “On correlation between the order of $S$-boxes and the strength of DES”, Lect. Notes Comput. Sci., 950, 1995, 366–375 | DOI | MR | Zbl

[14] Rijmen V., Daemen J., Preneel B., Bosselaers A., De Win E., “The cipher SHARK”, Lect. Notes Comput. Sci., 1039, 1996, 99–111 | DOI

[15] Proskuryakov I. V., Sbornik zadach po lineinoi algebre, 6-e izd., Nauka, M., 1978

[16] Youssef A. M., Misters S., Tavares S. E., “The design of linear transformations for substitution permutation encryption networks”, Workshop On Selected Areas in Cryptography (SAC'96), Workshop Record, 1997, 40–48