Nonlinearity of a class of Boolean functions constructed using significant bits of linear recurrences over the ring $\mathbb Z_{2^n}$
Matematičeskie voprosy kriptografii, Tome 7 (2016) no. 3, pp. 29-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct a class of Boolean functions defined by the significant bits of linear recurrent sequences over the ring $\mathbb Z_{2^n}$. For this class of functions bounds for nonlinearity coefficients are obtained.
@article{MVK_2016_7_3_a2,
     author = {O. V. Kamlovskiy},
     title = {Nonlinearity of a~class of {Boolean} functions constructed using significant bits of linear recurrences over the ring~$\mathbb Z_{2^n}$},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {29--46},
     year = {2016},
     volume = {7},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2016_7_3_a2/}
}
TY  - JOUR
AU  - O. V. Kamlovskiy
TI  - Nonlinearity of a class of Boolean functions constructed using significant bits of linear recurrences over the ring $\mathbb Z_{2^n}$
JO  - Matematičeskie voprosy kriptografii
PY  - 2016
SP  - 29
EP  - 46
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2016_7_3_a2/
LA  - ru
ID  - MVK_2016_7_3_a2
ER  - 
%0 Journal Article
%A O. V. Kamlovskiy
%T Nonlinearity of a class of Boolean functions constructed using significant bits of linear recurrences over the ring $\mathbb Z_{2^n}$
%J Matematičeskie voprosy kriptografii
%D 2016
%P 29-46
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2016_7_3_a2/
%G ru
%F MVK_2016_7_3_a2
O. V. Kamlovskiy. Nonlinearity of a class of Boolean functions constructed using significant bits of linear recurrences over the ring $\mathbb Z_{2^n}$. Matematičeskie voprosy kriptografii, Tome 7 (2016) no. 3, pp. 29-46. http://geodesic.mathdoc.fr/item/MVK_2016_7_3_a2/

[1] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, v. 2, Gelios ARV, M., 2003, 416 pp.

[2] Lidl R., Niderraiter G., Konechnye polya, Mir, M., 1988, 824 pp. | MR

[3] Nechaev A. A., “Tsiklovye tipy lineinykh podstanovok nad konechnymi kommutativnymi koltsami”, Matem. sbornik, 184:3 (1993), 21–56 | MR | Zbl

[4] Logachev O. A., Salnikov A. A., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MTsNMO, M., 2012, 584 pp.

[5] Kamlovskii O. V., “Rasstoyanie mezhdu dvoichnymi predstavleniyami lineinykh rekurrent nad polem $GF(2^k)$ i koltsom $\mathbb Z_{2^n}$”, Matematicheskie voprosy kriptografii, 7:1 (2016), 71–82 | MR

[6] Bylkov D. N., “Ob odnom klasse bulevykh funktsii, postroennykh s ispolzovaniem starshikh razryadnykh posledovatelnostei lineinykh rekurrent”, Prikladnaya diskretnaya matematika. Prilozhenie, 2014, no. 7, 59–60

[7] Shparlinski I. E., Winterhof A., “On the nonlinearity of linear recurrence sequences”, Applied Math. Letters, 19:4 (2006), 340–344 | DOI | MR | Zbl

[8] Ambrosimov A. S., “Svoistva bent-funktsii $q$-znachnoi logiki nad konechnymi polyami”, Diskretnaya matematika, 6:3 (1994), 50–60 | MR | Zbl

[9] Solodovnikov V. I., “Bent-funktsii iz konechnoi abelevoi gruppy v konechnuyu abelevu gruppu”, Diskretnaya matematika, 14:1 (2002), 99–113 | DOI | MR | Zbl

[10] Kamlovskii O. V., “Metod trigonometricheskikh summ dlya issledovaniya chastot $r$-gramm v starshikh koordinatnykh posledovatelnostyakh lineinykh rekurrent nad koltsom $\mathbb Z_{2^n}$”, Matematicheskie voprosy kriptografii, 1:4 (2010), 33–62

[11] Kamlovskii O. V., “Ravnomernye posledovatelnosti nad prostymi polyami, postroennye iz odnogo klassa lineinykh rekurrent nad koltsami vychetov”, Problemy peredachi informatsii, 50:2 (2014), 60–76 | MR | Zbl

[12] Kamlovskii O. V., “Chastotnye kharakteristiki razryadnykh posledovatelostei lineinykh rekurrent nad koltsami Galua”, Izv. RAN, 77:6 (2013), 71–96 | DOI | MR | Zbl