Spectral criterion for testing hypotheses on random permutations
Matematičeskie voprosy kriptografii, Tome 7 (2016) no. 3, pp. 19-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Suppose that for each of $N$ independent identically distributed random permutations we observe a pair consisting of a random uniformly distributed argument and a corresponding value of permutation. We consider the problem of testing the hypothesis that the distribution of permutations is uniform against the hypothesis that permutations are the products of r independent permutations with known distribution. A test constructed by eigenvectors of matrices of transition probabilities (arguments to values) is proposed and investigated.
@article{MVK_2016_7_3_a1,
     author = {O. V. Denisov},
     title = {Spectral criterion for testing hypotheses on random permutations},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {19--28},
     year = {2016},
     volume = {7},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2016_7_3_a1/}
}
TY  - JOUR
AU  - O. V. Denisov
TI  - Spectral criterion for testing hypotheses on random permutations
JO  - Matematičeskie voprosy kriptografii
PY  - 2016
SP  - 19
EP  - 28
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2016_7_3_a1/
LA  - ru
ID  - MVK_2016_7_3_a1
ER  - 
%0 Journal Article
%A O. V. Denisov
%T Spectral criterion for testing hypotheses on random permutations
%J Matematičeskie voprosy kriptografii
%D 2016
%P 19-28
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2016_7_3_a1/
%G ru
%F MVK_2016_7_3_a1
O. V. Denisov. Spectral criterion for testing hypotheses on random permutations. Matematičeskie voprosy kriptografii, Tome 7 (2016) no. 3, pp. 19-28. http://geodesic.mathdoc.fr/item/MVK_2016_7_3_a1/

[1] Borovkov A. A., Teoriya veroyatnostei, Editorial URSS, M., 1999, 472 pp. | MR

[2] Glukhov M. M., “O rasseivayuschikh lineinykh preobrazovaniyakh dlya blochnykh shifrsistem”, Matem. vopr. kriptogr., 2:2 (2011), 5–39

[3] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, v. 2, Gelios ARV, M., 2003, 416 pp.

[4] Lankaster P., Teoriya matrits, Nauka, M., 1978, 280 pp. | MR

[5] Mink Kh., Permanenty, Mir, M., 1982, 211 pp. | MR

[6] Lai X., Massey J., Murphy S., “Markov ciphers and differential cryptanalysis”, EUROCRYPT'91, Lect. Notes Comput. Sci., 547, 1991, 17–38 | DOI | MR | Zbl