@article{MVK_2016_7_2_a8,
author = {N. A. Kolomeec},
title = {A graph of minimal distances between bent functions},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {103--110},
year = {2016},
volume = {7},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MVK_2016_7_2_a8/}
}
N. A. Kolomeec. A graph of minimal distances between bent functions. Matematičeskie voprosy kriptografii, Tome 7 (2016) no. 2, pp. 103-110. http://geodesic.mathdoc.fr/item/MVK_2016_7_2_a8/
[1] Carlet C., “Two new classes of bent functions”, Advances in Cryptology-EUROCRYPT'93, Lect. Notes Comput. Sci., 765, 1994, 77–101 | DOI | MR | Zbl
[2] Canteaut A., Daum M., Dobbertin H., Leander G., “Finding nonnormal bent functions”, Discrete Appl. Math., 154:2 (2006), 202–218 | DOI | MR | Zbl
[3] Kolomeec N. A., “An upper bound for the number of bent functions at the distance $2^k$ from an arbitrary bent function in $2k$ variables”, Prikl. Diskretn. Matem. (Appl. Discrete Math.), 2014, no. 3 (25), 28–39 (in Russian)
[4] Kolomeec N. A., Pavlov A. V., “Properties of bent functions at the minimal distance”, Prikl. Diskretn. Matem. (Appl. Discrete Math.), 2009, no. 4(6), 5–20 (in Russian)
[5] Logachev O. A., Sal'nikov A. A., Smyshlyaev S. V., Yashenko V. V., Boolean functions in coding theory and cryptology, MCCME, M., 2012, 584 pp. (in Russian) | MR
[6] McFarland R. L., “A family of difference sets in non-cyclic groups”, J. Combin. Theory, Ser. A, 15:1 (1973), 1–10 | DOI | MR | Zbl
[7] Rothaus O., “On bent functions”, J. Combin. Theory, Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl
[8] Tokareva N. N., “Bent functions: results and applications. A survey”, Prikl. Diskretn. Matem. (Appl. Discrete Math.), 2009, no. 1(3), 15–37 (in Russian) | MR
[9] Tokareva N., Bent Functions, Results and Applications to Cryptography, Academic Press/Elsevier, N.Y./Amsterdam etc., 2015, 220 pp. | MR