Approximate common divisor problem and continued fractions
Matematičeskie voprosy kriptografii, Tome 7 (2016) no. 2, pp. 61-70
Cet article a éte moissonné depuis la source Math-Net.Ru
We describe two algorithms for computing common divisors of two integers, when one of these integers is known only approximately. We generalize a known method based on the continued fraction technique. In some cases new algorithms overcome the best known algorithm based on Coppersmith's method: not so accurate approximation is reqiured to compute a divisor.
@article{MVK_2016_7_2_a5,
author = {K. D. Zhukov},
title = {Approximate common divisor problem and continued fractions},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {61--70},
year = {2016},
volume = {7},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MVK_2016_7_2_a5/}
}
K. D. Zhukov. Approximate common divisor problem and continued fractions. Matematičeskie voprosy kriptografii, Tome 7 (2016) no. 2, pp. 61-70. http://geodesic.mathdoc.fr/item/MVK_2016_7_2_a5/
[1] Buhshtab A. A., Number Theory, Prosvechenie, M., 1966 (in Russian) | MR
[2] Dujella A., “Continued fractions and RSA with small secret exponent”, Tatra Mt. Math. Publ., 29 (2004), 101–112 | MR | Zbl
[3] Howgrave-Graham N., “Approximate integer common divisors”, Cryptography and Lattices, CaLC 2001, Lect. Notes Comput. Sci., 2146, 2001, 51–66 | DOI | MR | Zbl
[4] Sarkar S., Maitra S., “Approximate integer common divisor problem relates to implicit factorization”, IEEE Trans. Inf. Theory, IT, 57:6 (2011), 4002–4013 | DOI | MR
[5] MPIR: Multiple Precision Integers and Rationals, http://www.mpir.org/