Minimizing collisions for quantum hashing
Matematičeskie voprosy kriptografii, Tome 7 (2016) no. 2, pp. 47-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present explicit algorithms for computation of quantum hashing parameters that minimize the probability of encountering quantum collisions.
@article{MVK_2016_7_2_a3,
     author = {A. V. Vasiliev and M. T. Ziatdinov},
     title = {Minimizing collisions for quantum hashing},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {47--52},
     year = {2016},
     volume = {7},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MVK_2016_7_2_a3/}
}
TY  - JOUR
AU  - A. V. Vasiliev
AU  - M. T. Ziatdinov
TI  - Minimizing collisions for quantum hashing
JO  - Matematičeskie voprosy kriptografii
PY  - 2016
SP  - 47
EP  - 52
VL  - 7
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MVK_2016_7_2_a3/
LA  - en
ID  - MVK_2016_7_2_a3
ER  - 
%0 Journal Article
%A A. V. Vasiliev
%A M. T. Ziatdinov
%T Minimizing collisions for quantum hashing
%J Matematičeskie voprosy kriptografii
%D 2016
%P 47-52
%V 7
%N 2
%U http://geodesic.mathdoc.fr/item/MVK_2016_7_2_a3/
%G en
%F MVK_2016_7_2_a3
A. V. Vasiliev; M. T. Ziatdinov. Minimizing collisions for quantum hashing. Matematičeskie voprosy kriptografii, Tome 7 (2016) no. 2, pp. 47-52. http://geodesic.mathdoc.fr/item/MVK_2016_7_2_a3/

[1] Rogaway P., Shrimpton T., “Cryptographic hash-function basics: Definitions, implications, and separations for preimage resistance, second-preimage resistance, and collision resistance”, Fast Software Encryption, FSE 2004, Lect. Notes Comput. Sci., 3017, 2004, 371–388 | DOI | Zbl

[2] F. Ablayev, A. Vasiliev, “Cryptographic quantum hashing”, Laser Physics Letters, 11:2 (2014), 025202 | DOI | MR

[3] Gottesman D., Chuang I., Quantum digital signatures, arXiv: quant-ph/0105032

[4] Vasiliev A., Quantum communications based on quantum hashing, arXiv: 1312.1661

[5] Razborov A. A., Szemeredi E., Wigderson A., “Constructing small sets that are uniform in arithmetic progressions”, Comb. Probab. Comput., 2:4 (1993), 513–518 | DOI | MR | Zbl

[6] Michalewicz Z., Genetic Algorithms+Data Structures=Evolution Programs, 3rd ed., rev. extend., Springer, Heidelberg etc., 1996, xx+387 pp. | MR | Zbl

[7] Kirkpatrick S., Gelatt C. D., Jr., Vecchi M. P., “Optimization by simulated annealing”, Science, 220:4598 (1983), 671–680 | DOI | MR | Zbl