Parsimonious models of high-order Markov chains for evaluation of cryptographic generators
Matematičeskie voprosy kriptografii, Tome 7 (2016) no. 2, pp. 131-142 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Parsimonious (small-parametric) high-order Markov chains determined by a small number of parameters may be used as models of output sequences in cryptographic generators and their blocks. The paper presents methods of statistical identification (parameter estimation and hypotheses testing) by the observed output sequence for Jacobs–Lewis model, Raftery MTD model, Markov chain with partial connections, Markov chain of conditional order.
@article{MVK_2016_7_2_a12,
     author = {Yu. S. Kharin},
     title = {Parsimonious models of high-order {Markov} chains for evaluation of cryptographic generators},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {131--142},
     year = {2016},
     volume = {7},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MVK_2016_7_2_a12/}
}
TY  - JOUR
AU  - Yu. S. Kharin
TI  - Parsimonious models of high-order Markov chains for evaluation of cryptographic generators
JO  - Matematičeskie voprosy kriptografii
PY  - 2016
SP  - 131
EP  - 142
VL  - 7
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MVK_2016_7_2_a12/
LA  - en
ID  - MVK_2016_7_2_a12
ER  - 
%0 Journal Article
%A Yu. S. Kharin
%T Parsimonious models of high-order Markov chains for evaluation of cryptographic generators
%J Matematičeskie voprosy kriptografii
%D 2016
%P 131-142
%V 7
%N 2
%U http://geodesic.mathdoc.fr/item/MVK_2016_7_2_a12/
%G en
%F MVK_2016_7_2_a12
Yu. S. Kharin. Parsimonious models of high-order Markov chains for evaluation of cryptographic generators. Matematičeskie voprosy kriptografii, Tome 7 (2016) no. 2, pp. 131-142. http://geodesic.mathdoc.fr/item/MVK_2016_7_2_a12/

[1] Alferov A., Zubov A., Kuzmin A., Cheremushkin A., Fundamentals of Cryptography, Gelios ARV, M., 2001, 480 pp. (in Russian)

[2] Berchtold A., “High-order extensions of the double chain Markov model”, Stoch. Models, 18:2 (2002), 193–227 | DOI | MR | Zbl

[3] Billingsley P., “Statistical methods in Markov chains”, Ann. Math. Statist., 32 (1961), 12–40 | DOI | MR | Zbl

[4] Buhlmann P., Wyner A., “Variable length Markov chains”, Ann. Statist., 27:2 (1999), 480–513 | DOI | MR | Zbl

[5] Doob J., Stochastic Processes, Wiley, N.Y., 1953 | MR | Zbl

[6] Jacobs P. A., Lewis P. A. W., “Discrete time series generated by mixtures. I: Correlational and runs properties”, J. Royal Statist. Soc. Ser. B, 40:1 (1978), 94–105 | MR | Zbl

[7] Kharin Yu., Robustness in Statistical Forecasting, Springer, N.Y., 2013, 356 pp. | MR | Zbl

[8] Kharin Yu., “Statistical analysis of discrete time series based on the MC $(s, r)$-model”, Austrian J. Statist., 40:1–2 (2011), 75–84 | MR

[9] Kharin Yu., Agievich S., Vasiljev D., Matveev G., Cryptology, BSU, Minsk, 2013, 512 pp. (in Russian)

[10] Kharin Yu., Maltsew M., “Markov chain of conditional order: properties and statistical analysis”, Austrian J. Statist., 43:3–4 (2014), 205–217 | DOI

[11] Discrete Math. Appl., 17:3 (2007), 295–317 | DOI | DOI | MR | MR | Zbl

[12] Kharin Yu., Yarmola A., “Statistical estimation of parameters for the MTD-model of discrete time series”, Vesti of Nat. Acad. of Sci. of Belarus, 2006, no. 2, 20–26 (in Russian) | MR

[13] Maksimov Yu. I., “On Markov chains in binary shift registers with random elements”, Trudy po diskretnoi matematike, 1, TVP Sci. Publ., M., 1997, 203–220 (in Russian) | MR | Zbl

[14] Raftery A., “A model for high-order Markov chains”, J. Royal Statist. Soc. Ser. B, 47:3 (1985), 528–539 | MR | Zbl

[15] Sachkov V. N., Introduction to Combinatorial Methods of Discrete Mathematics, Nauka, M., 1982, 489 pp. (in Russian) | MR | Zbl

[16] Shoitov A. M., “Probabilistic models of pseudorandom sequences in cryptography”, Problemy informacionnoi bezopasnosti, Moscow State Univ., M., 2007, 116–134 (in Russian)

[17] Zubkov A. M., “Generators of pseudorandom numbers and their applications”, Matematika i bezopasnost' informacionnyh tehnologii, Moscow State Univ., M., 2003, 200–206 (in Russian) | MR | Zbl