On the concept of quantum hashing
Matematičeskie voprosy kriptografii, Tome 7 (2016) no. 2, pp. 7-20 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present the notion of quantum hashing as a natural generalization of classical hashing. We suggest the concept of a quantum hash generator and a design allowing to construct a large number of different quantum hash functions. The construction is based on composition of a classical $\varepsilon$-universal hash family and a given family of functions — quantum hash generators.
@article{MVK_2016_7_2_a0,
     author = {F. M. Ablayev and M. F. Ablayev},
     title = {On the concept of quantum hashing},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {7--20},
     year = {2016},
     volume = {7},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MVK_2016_7_2_a0/}
}
TY  - JOUR
AU  - F. M. Ablayev
AU  - M. F. Ablayev
TI  - On the concept of quantum hashing
JO  - Matematičeskie voprosy kriptografii
PY  - 2016
SP  - 7
EP  - 20
VL  - 7
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MVK_2016_7_2_a0/
LA  - en
ID  - MVK_2016_7_2_a0
ER  - 
%0 Journal Article
%A F. M. Ablayev
%A M. F. Ablayev
%T On the concept of quantum hashing
%J Matematičeskie voprosy kriptografii
%D 2016
%P 7-20
%V 7
%N 2
%U http://geodesic.mathdoc.fr/item/MVK_2016_7_2_a0/
%G en
%F MVK_2016_7_2_a0
F. M. Ablayev; M. F. Ablayev. On the concept of quantum hashing. Matematičeskie voprosy kriptografii, Tome 7 (2016) no. 2, pp. 7-20. http://geodesic.mathdoc.fr/item/MVK_2016_7_2_a0/

[1] Ablayev F., Vasiliev A., Quantum hashing, 2013, arXiv: 1310.4922 [quant-ph]

[2] F. Ablayev, A. Vasiliev, “Cryptographic quantum hashing”, Laser Physics Letters, 11:2 (2014), 025202 | DOI | MR

[3] Ablayev F., Ablayev M., Quantum hashing via classical $\varepsilon$-universal hashing constructions, 2014, arXiv: 1404.1503 [quant-ph] | MR

[4] Ablayev F., Vasiliev A., “Computing Boolean functions via quantum hashing”, Computing with New Resources, Lect. Notes Comput. Sci., 8808, 2014, 149–160 | DOI | MR | Zbl

[5] Buhrman H., Cleve R., Watrous J., de Wolf R., “Quantum fingerprinting”, Phys. Rev. Lett., 87 (2001), 167902 | DOI

[6] Gavinsky D., Ito T., “Quantum fingerprints that keep secrets”, Quantum Inf. and Comput., 13:7–8 (2013), 583–606 | MR

[7] Gottesman D., Chuang I., Quantum digital signatures, 2001, arXiv: quant-ph/0105032

[8] Freivalds R., “Probabilistic machines can use less running time”, Proc. IFIP Congress 77 (Toronto, Canada, 1977), North-Holland, Amsterdam, 1977, 839–842 | MR

[9] Montanaro A., Osborne T., “Quantum Boolean functions”, Chicago J. Theor. Comput. Sci., 2010 (2010), 1, arXiv: 0810.2435 | DOI | MR

[10] Razborov A., Szemeredi E., Wigderson A., “Constructing small sets that are uniform in arithmetic progressions”, Comb., Probab. and Comput., 2:4 (1993), 513–518 | DOI | MR | Zbl

[11] Stinson D. R., “On the connections between universal $\varepsilon$-hashing, combinatorial designs and error-correcting codes”, Congr. Numer., 114 (1996), 7–27 | MR | Zbl