Estimates of the number of integers with the special prime factorization
Matematičeskie voprosy kriptografii, Tome 7 (2016) no. 1, pp. 119-142 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain several integral formulas for some generalizations of the known Dickman function allowing to estimate the number of integers in a long interval with prime factorizations satisfying specific conditions. These formulas generalize known formulas due to R. Lambert, V. H. Ekkelkamp and the author and use the integration of reduced multiplicity.
@article{MVK_2016_7_1_a6,
     author = {A. S. Rybakov},
     title = {Estimates of the number of integers with the special prime factorization},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {119--142},
     year = {2016},
     volume = {7},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2016_7_1_a6/}
}
TY  - JOUR
AU  - A. S. Rybakov
TI  - Estimates of the number of integers with the special prime factorization
JO  - Matematičeskie voprosy kriptografii
PY  - 2016
SP  - 119
EP  - 142
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MVK_2016_7_1_a6/
LA  - ru
ID  - MVK_2016_7_1_a6
ER  - 
%0 Journal Article
%A A. S. Rybakov
%T Estimates of the number of integers with the special prime factorization
%J Matematičeskie voprosy kriptografii
%D 2016
%P 119-142
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/MVK_2016_7_1_a6/
%G ru
%F MVK_2016_7_1_a6
A. S. Rybakov. Estimates of the number of integers with the special prime factorization. Matematičeskie voprosy kriptografii, Tome 7 (2016) no. 1, pp. 119-142. http://geodesic.mathdoc.fr/item/MVK_2016_7_1_a6/

[1] Rybakov A. S., “Modifikatsiya algoritma otsenki kolichestva tselykh chisel, imeyuschikh ne bolee trekh bolshikh prostykh delitelei”, Matematicheskie voprosy kriptografii, 4:3 (2013), 131–158

[2] Aoki K., Bos J. W., Franke J., Gaudry P., Kleinjung T., Kruppa A., Lenstra A. K., Montgomery P. L., Osvik D. A., te Riele H., Thome E, Timofeev A, Zimmermann P., Factorization of a 768-bit RSA modulus, , 2010 https://members.loria.fr/PZimmermann/talks/rsa768_tools2010.pdf

[3] Bach E., Peralta R., “Asymptotic semismoothness probabilities”, Math. Comput., 65:216 (1996), 1701–1715 | DOI | MR | Zbl

[4] Ekkelkamp W. H., On the amount of sieving in factorization methods, Ph. D. thesis, Univ. Leiden/CWI/T. Stieltjes Inst. Math., Leiden, 2010, iv+111 pp. | MR

[5] Knuth D. E., Pardo L. T., “Analysis of a simple factorization algorithm”, Theor. Comput. Sci., 3:3 (1976), 321–348 | DOI | MR

[6] Lambert R. J., Computational aspects of discrete logarithms, Ph. D. thesis, Univ. Waterloo, Electrical Engineering, Ontario, 1996 http://www.cacr.math.uwaterloo.ca/techreports/2000/lambert-thesis.ps | Zbl

[7] Pollard J. M., “The lattice sieve”, The development of the number field sieve, Lect. Notes Math, 1554, eds. Lenstra A. K., Lenstra H. W. Jr., 1993, 43–49 | DOI | MR | Zbl