@article{MVK_2016_7_1_a6,
author = {A. S. Rybakov},
title = {Estimates of the number of integers with the special prime factorization},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {119--142},
year = {2016},
volume = {7},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MVK_2016_7_1_a6/}
}
A. S. Rybakov. Estimates of the number of integers with the special prime factorization. Matematičeskie voprosy kriptografii, Tome 7 (2016) no. 1, pp. 119-142. http://geodesic.mathdoc.fr/item/MVK_2016_7_1_a6/
[1] Rybakov A. S., “Modifikatsiya algoritma otsenki kolichestva tselykh chisel, imeyuschikh ne bolee trekh bolshikh prostykh delitelei”, Matematicheskie voprosy kriptografii, 4:3 (2013), 131–158
[2] Aoki K., Bos J. W., Franke J., Gaudry P., Kleinjung T., Kruppa A., Lenstra A. K., Montgomery P. L., Osvik D. A., te Riele H., Thome E, Timofeev A, Zimmermann P., Factorization of a 768-bit RSA modulus, , 2010 https://members.loria.fr/PZimmermann/talks/rsa768_tools2010.pdf
[3] Bach E., Peralta R., “Asymptotic semismoothness probabilities”, Math. Comput., 65:216 (1996), 1701–1715 | DOI | MR | Zbl
[4] Ekkelkamp W. H., On the amount of sieving in factorization methods, Ph. D. thesis, Univ. Leiden/CWI/T. Stieltjes Inst. Math., Leiden, 2010, iv+111 pp. | MR
[5] Knuth D. E., Pardo L. T., “Analysis of a simple factorization algorithm”, Theor. Comput. Sci., 3:3 (1976), 321–348 | DOI | MR
[6] Lambert R. J., Computational aspects of discrete logarithms, Ph. D. thesis, Univ. Waterloo, Electrical Engineering, Ontario, 1996 http://www.cacr.math.uwaterloo.ca/techreports/2000/lambert-thesis.ps | Zbl
[7] Pollard J. M., “The lattice sieve”, The development of the number field sieve, Lect. Notes Math, 1554, eds. Lenstra A. K., Lenstra H. W. Jr., 1993, 43–49 | DOI | MR | Zbl