On the group properties of substitutions defined on the subgroup cosets of finite Abelian group of composite order
Matematičeskie voprosy kriptografii, Tome 7 (2016) no. 1, pp. 83-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Necessary and sufficient conditions of transitivity and primitivity of substitution groups generated by substitutions on the cosets of the Abelian group $G$ are obtained. The structure of these groups is described for the case of their primitivity and for the case when $G$ is the direct product of its subgroups. Necessary and sufficient conditions of primitivity of the group generated by the right regular representation of the group $G$ and a substitution defined on the cosets of the group $G$ are obtained also.
@article{MVK_2016_7_1_a4,
     author = {A. Yu. Maksimovskiy},
     title = {On the group properties of substitutions defined on the subgroup cosets of finite {Abelian} group of composite order},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {83--92},
     year = {2016},
     volume = {7},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2016_7_1_a4/}
}
TY  - JOUR
AU  - A. Yu. Maksimovskiy
TI  - On the group properties of substitutions defined on the subgroup cosets of finite Abelian group of composite order
JO  - Matematičeskie voprosy kriptografii
PY  - 2016
SP  - 83
EP  - 92
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MVK_2016_7_1_a4/
LA  - ru
ID  - MVK_2016_7_1_a4
ER  - 
%0 Journal Article
%A A. Yu. Maksimovskiy
%T On the group properties of substitutions defined on the subgroup cosets of finite Abelian group of composite order
%J Matematičeskie voprosy kriptografii
%D 2016
%P 83-92
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/MVK_2016_7_1_a4/
%G ru
%F MVK_2016_7_1_a4
A. Yu. Maksimovskiy. On the group properties of substitutions defined on the subgroup cosets of finite Abelian group of composite order. Matematičeskie voprosy kriptografii, Tome 7 (2016) no. 1, pp. 83-92. http://geodesic.mathdoc.fr/item/MVK_2016_7_1_a4/

[1] Kholl M., Teoriya grupp, Per. s angl. N. V. Dyumina, Z. P. Zhilinskoi, ed. L. A. Kaluzhnin, Izd-vo inostr. lit., M., 1962, 468 pp.