@article{MVK_2016_7_1_a3,
author = {O. V. Kamlovskiy},
title = {On the {Hamming} distance between binary representations of linear recurrent sequences over field $GF(2^k)$ and ring $\mathbb{Z}_{2^n}$},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {71--82},
year = {2016},
volume = {7},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MVK_2016_7_1_a3/}
}
TY - JOUR
AU - O. V. Kamlovskiy
TI - On the Hamming distance between binary representations of linear recurrent sequences over field $GF(2^k)$ and ring $\mathbb{Z}_{2^n}$
JO - Matematičeskie voprosy kriptografii
PY - 2016
SP - 71
EP - 82
VL - 7
IS - 1
UR - http://geodesic.mathdoc.fr/item/MVK_2016_7_1_a3/
LA - ru
ID - MVK_2016_7_1_a3
ER -
%0 Journal Article
%A O. V. Kamlovskiy
%T On the Hamming distance between binary representations of linear recurrent sequences over field $GF(2^k)$ and ring $\mathbb{Z}_{2^n}$
%J Matematičeskie voprosy kriptografii
%D 2016
%P 71-82
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/MVK_2016_7_1_a3/
%G ru
%F MVK_2016_7_1_a3
O. V. Kamlovskiy. On the Hamming distance between binary representations of linear recurrent sequences over field $GF(2^k)$ and ring $\mathbb{Z}_{2^n}$. Matematičeskie voprosy kriptografii, Tome 7 (2016) no. 1, pp. 71-82. http://geodesic.mathdoc.fr/item/MVK_2016_7_1_a3/
[1] Kuzmin A. S., Kurakin V. L., Nechaev A. A., “Psevdosluchainye i polilineinye posledovatelnosti”, Trudy po diskretnoi matematike, 1 (1997), 139–202 | MR | Zbl
[2] Nawaz Y., Gong G., “WG: a family of stream ciphers with designed randomness properties”, Information Sciences, 178:7 (2008), 1903–1916 | DOI | MR | Zbl
[3] Goltvanitsa M. A., Zaitsev S. N., Nechaev A. A., “Skruchennye lineinye rekurrenty maksimalnogo perioda nad koltsami Galua”, Fundam. i prikl. matematika, 17:3 (2012), 5–23 | MR | Zbl
[4] Golomb S. W., Gong G., Signal design for good correlation, New York, 2005, 438 pp. | MR
[5] Nechaev A. A., “Tsiklovye tipy lineinykh podstanovok nad konechnymi kommutativnymi koltsami”, Matem. sb., 184:3 (1993), 21–56 | MR | Zbl
[6] B. A. Pogorelov, V. N. Sachkov (red.), Slovar kriptograficheskikh terminov, MTsNMO, M., 2006, 92 pp.
[7] Logachev O. A., Salnikov A. A., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MTsNMO, M., 2012, 584 pp.
[8] Kamlovskii O. V., “Kolichestvo poyavlenii elementov v vykhodnykh posledovatelnostyakh filtruyuschikh generatorov”, Prikladnaya diskretnaya matematika, 2013, no. 3(21), 11–25
[9] Kamlovskii O. V., “Ravnomernye posledovatelnosti nad prostymi polyami, postroennye iz odnogo klassa lineinykh rekurrent nad koltsami vychetov”, Problemy peredachi informatsii, 50:2 (2014), 60–76 | MR | Zbl
[10] Kamlovskii O. V., Kuzmin A. S., “Otsenki chastot poyavleniya elementov v lineinykh rekurrentnykh posledovatelnostyakh nad koltsami Galua”, Fundam. i prikl. matematika, 6:4 (2000), 1083–1094 | MR | Zbl
[11] Kamlovskii O. V., “Metod trigonometricheskikh summ dlya issledovaniya chastot $r$-gramm v starshikh koordinatnykh posledovatelnostyakh lineinykh rekurrent nad koltsom $\mathbb{Z}_{2^n}$”, Matematicheskie voprosy kriptografii, 1:4 (2010), 33–62
[12] Bylkov D. N., “Ob odnom klasse bulevykh funktsii, postroennykh s ispolzovaniem starshikh razryadnykh posledovatelnostei lineinykh rekurrent”, Prikladnaya diskretnaya matematika. Prilozhenie, 7 (2014), 59–60