Functions from Schaefer classes having negations belonging to other Schaefer classes
Matematičeskie voprosy kriptografii, Tome 6 (2015) no. 4, pp. 23-48
Cet article a éte moissonné depuis la source Math-Net.Ru
Multiaffine, bijunctive ($2$-CNF), weakly positive and weakly negative (Horn's) Boolean functions generates polynomially solvable systems of equations. These sets of Boolean functions are called the Schaefer classes. We describe sets of Boolean functions $f$ from any Schaefer class such that $f$ belongs to another Schaefer class. The results obtained may be applied to the solution of systems of Boolean equations.
@article{MVK_2015_6_4_a1,
author = {S. P. Gorshkov},
title = {Functions from {Schaefer} classes having negations belonging to other {Schaefer} classes},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {23--48},
year = {2015},
volume = {6},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MVK_2015_6_4_a1/}
}
S. P. Gorshkov. Functions from Schaefer classes having negations belonging to other Schaefer classes. Matematičeskie voprosy kriptografii, Tome 6 (2015) no. 4, pp. 23-48. http://geodesic.mathdoc.fr/item/MVK_2015_6_4_a1/
[1] Schaefer T., “Complexity of satisfiability problems”, Proc. 10 Annual ACM Symp. on Theory of Computing Machinery, 1978, 216–226 | MR | Zbl
[2] Gizunov S. A., Nosov V. A., “O klassifikatsii vsekh bulevykh funktsii chetyrekh peremennykh po klassam Shefera”, Obozr. prikl. i promyshl. matem., 2:3 (1995), 440–467
[3] Gorshkov S. P., “Primenenie teorii NP-polnykh zadach dlya otsenki slozhnosti resheniya sistem bulevykh uravnenii”, Obozr. prikl. i promyshl. matem., 2:3 (1995), 325–398