On multiple repetitions of long tuples in a Markov chain
Matematičeskie voprosy kriptografii, Tome 6 (2015) no. 3, pp. 117-133 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $X_0,X_1,\dots$ be a simple ergodic Markov chain with $N$ states and $\tilde\xi_{n,k}^{(m)}(s)$ be the number of $m$-series of $k$-repetitions of $s$-tuples in the chain segment $X_0,X_1,\dots,X_{n+s+m}$. The sufficient conditions for the distribution of the vector $\tilde\Xi_{n,k,M}(s)=(\tilde\xi_{n,k}^{(1)}(s),\dots,\tilde\xi_{n,k}^{(M)}(s))$ to converge to the multidimensional Poisson distribution are found. This permits to prove limit theorems for the distributions of some random variables connected with $\tilde\Xi_{n,k,M}(s)$.
@article{MVK_2015_6_3_a6,
     author = {V. G. Mikhailov and A. M. Shoitov},
     title = {On multiple repetitions of long tuples in {a~Markov} chain},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {117--133},
     year = {2015},
     volume = {6},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2015_6_3_a6/}
}
TY  - JOUR
AU  - V. G. Mikhailov
AU  - A. M. Shoitov
TI  - On multiple repetitions of long tuples in a Markov chain
JO  - Matematičeskie voprosy kriptografii
PY  - 2015
SP  - 117
EP  - 133
VL  - 6
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2015_6_3_a6/
LA  - ru
ID  - MVK_2015_6_3_a6
ER  - 
%0 Journal Article
%A V. G. Mikhailov
%A A. M. Shoitov
%T On multiple repetitions of long tuples in a Markov chain
%J Matematičeskie voprosy kriptografii
%D 2015
%P 117-133
%V 6
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2015_6_3_a6/
%G ru
%F MVK_2015_6_3_a6
V. G. Mikhailov; A. M. Shoitov. On multiple repetitions of long tuples in a Markov chain. Matematičeskie voprosy kriptografii, Tome 6 (2015) no. 3, pp. 117-133. http://geodesic.mathdoc.fr/item/MVK_2015_6_3_a6/

[1] Belyaev P. F., “O sovmestnom raspredelenii chastot dlinnykh $s$-tsepochek v multinomialnoi skheme s ravnoveroyatnymi iskhodami”, Teoriya veroyatn. i primen., 14:3 (1969), 540–546 | MR | Zbl

[2] Zubkov A. M., Mikhailov V. G., “Predelnye raspredeleniya sluchainykh velichin, svyazannykh s dlinnymi povtoreniyami v posledovatelnosti nezavisimykh ispytanii”, Teoriya veroyatn. i primen., 19:1 (1974), 173–181 | MR | Zbl

[3] Zubkov A. M., Mikhailov V. G., “O povtoreniyakh $s$-tsepochek v posledovatelnosti nezavisimykh velichin”, Teoriya veroyatn. i primen., 24:2 (1979), 267–279 | MR | Zbl

[4] Mikhailov V. G., “Predelnye raspredeleniya sluchainykh velichin, svyazannykh s mnogokratnymi dlinnymi povtoreniyami v posledovatelnosti nezavisimykh ispytanii”, Teoriya veroyatn. i primen., 19:1 (1974), 182–187 | MR | Zbl

[5] Hansen N. R., “Local alignment of Markov chains”, Ann. Appl. Probab., 16:3 (2006), 1262–1296 | DOI | MR | Zbl

[6] Belyaev P. F., “K voprosu o sovmestnom raspredelenii chastot $s$-tsepochek v slozhnykh tsepyakh Markova s bolshim chislom sostoyanii”, Teoriya veroyatn. i primen., 14:2 (1969), 333–339 | MR | Zbl

[7] Belyaev P. F., “O sovmestnom raspredelenii chastot iskhodov v tsepyakh Markova s bolshim chislom sostoyanii”, Teoriya veroyatn. i primen., 22:3 (1977), 534–545 | MR | Zbl

[8] Zubkov A. M., “Neravenstva dlya veroyatnostei perekhodov s zaprescheniyami i ikh primeneniya”, Matem. sb., 109(151):4(8) (1979), 491–532 | MR | Zbl

[9] Mikhailov V. G., Shoitov A. M., “O dlinnykh povtoreniyakh tsepochek v tsepi Markova”, Diskretnaya matematika, 26:3 (2014), 79–89 | DOI | MR

[10] Gantmakher F. R., Teoriya matrits, 5-e izd., FIZMATLIT, M., 2004, 560 pp. | MR

[11] Shoitov A. M., “Puassonovskoe priblizhenie dlya chisla povtorenii znachenii diskretnoi funktsii ot tsepochek”, Diskretnaya matematika, 17:2 (2005), 56–69 | DOI | MR | Zbl

[12] Barbour A. D., Holst L., Janson S., Poisson Approximation, Oxford University Press, Oxford, 1992, 277 pp. | MR | Zbl