Computation of the additivity coefficient of some bijunctive, weakly positive and weakly negative Boolean functions
Matematičeskie voprosy kriptografii, Tome 6 (2015) no. 3, pp. 75-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We derive formulas for computation of the additivity coefficients of some bijunctive, weakly positive and weakly negative Boolean functions. An algorithm permitting to compute the additivity coefficient of any Boolean function given the normal conjunctive form is proposed.
@article{MVK_2015_6_3_a4,
     author = {P. N. Zakrevskiy},
     title = {Computation of the additivity coefficient of some bijunctive, weakly positive and weakly negative {Boolean} functions},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {75--88},
     year = {2015},
     volume = {6},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2015_6_3_a4/}
}
TY  - JOUR
AU  - P. N. Zakrevskiy
TI  - Computation of the additivity coefficient of some bijunctive, weakly positive and weakly negative Boolean functions
JO  - Matematičeskie voprosy kriptografii
PY  - 2015
SP  - 75
EP  - 88
VL  - 6
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2015_6_3_a4/
LA  - ru
ID  - MVK_2015_6_3_a4
ER  - 
%0 Journal Article
%A P. N. Zakrevskiy
%T Computation of the additivity coefficient of some bijunctive, weakly positive and weakly negative Boolean functions
%J Matematičeskie voprosy kriptografii
%D 2015
%P 75-88
%V 6
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2015_6_3_a4/
%G ru
%F MVK_2015_6_3_a4
P. N. Zakrevskiy. Computation of the additivity coefficient of some bijunctive, weakly positive and weakly negative Boolean functions. Matematičeskie voprosy kriptografii, Tome 6 (2015) no. 3, pp. 75-88. http://geodesic.mathdoc.fr/item/MVK_2015_6_3_a4/

[1] Glukhov M. M., Zakrevskii P. N., “O koeffitsientakh additivnosti i affinnosti diskretnykh funktsii”, Diskretn. matem., 24:1 (2012), 30–47 | DOI | MR | Zbl

[2] Glukhov M. M., Shishkov A. B., Matematicheskaya logika. Diskretnye funktsii. Teoriya algoritmov, Lan, SPb., 2012, 416 pp.

[3] Gorshkov S. P., “Primenenie teorii NP-polnykh zadach dlya otsenki slozhnosti resheniya sistem bulevykh uravnenii”, Obozr. prikl. i promyshl. matem., 2:3 (1995), 325–398

[4] Tarasov A. V., “O svoistvakh funktsii, predstavlennykh v vide 2-KNF”, Diskretn. matem., 13:4 (2001), 99–115 | DOI | MR | Zbl

[5] Schaefer T., “The complexity of satisfiability problems”, Proc. 10th Annu. ACM Symp. on Theory of Computing, 1978, 216–226 | MR | Zbl