GOST 28147-89 masking against side channel attacks
Matematičeskie voprosy kriptografii, Tome 6 (2015) no. 2, pp. 35-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Side-channel attacks exploit leakage from the physical implementation of a cryptographic algorithm to obtain some additional information on its secret parameters. During the last decade we observe the intensive development of various side-channel attacks, that affect security of many popular cryptosystems. In an attempt to reduce the possible damage a general method that masks the intermediate data was proposed. This method was studied for popular cryptographic algorithms such as RSA, DES, AES and several of the AES candidates. In this paper we propose a strategy of masking for Russian cryptographic standard GOST 28147-89 and perform an analysis of its properties.
@article{MVK_2015_6_2_a4,
     author = {S. V. Matveev},
     title = {GOST 28147-89 masking against side channel attacks},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {35--43},
     year = {2015},
     volume = {6},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MVK_2015_6_2_a4/}
}
TY  - JOUR
AU  - S. V. Matveev
TI  - GOST 28147-89 masking against side channel attacks
JO  - Matematičeskie voprosy kriptografii
PY  - 2015
SP  - 35
EP  - 43
VL  - 6
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MVK_2015_6_2_a4/
LA  - en
ID  - MVK_2015_6_2_a4
ER  - 
%0 Journal Article
%A S. V. Matveev
%T GOST 28147-89 masking against side channel attacks
%J Matematičeskie voprosy kriptografii
%D 2015
%P 35-43
%V 6
%N 2
%U http://geodesic.mathdoc.fr/item/MVK_2015_6_2_a4/
%G en
%F MVK_2015_6_2_a4
S. V. Matveev. GOST 28147-89 masking against side channel attacks. Matematičeskie voprosy kriptografii, Tome 6 (2015) no. 2, pp. 35-43. http://geodesic.mathdoc.fr/item/MVK_2015_6_2_a4/

[1] Kocher P., Jaffe J., Jun B., Introduction to differential power analysis and related attacks, Tech. Rept., , Cryptography Research Inc., 1998 http://www.cryptography.com/resources/whitepapers/DPA-technical.html

[2] Kocher P., Jaffe J., Jun B., “Differential power analysis”, CRYPTO'99, Lect. Notes Comput. Sci., 1666, Springer-Verlag, 1999, 388–397 | Zbl

[3] Kocher P. C., “Timing attacks on implementations of Diffie-Hellman, RSA, DSS and other systems”, CRYPTO'96, Lect. Notes Comput. Sci., 1109, 1996, 104–113

[4] Coron J.-S., Kocher P., Naccache D., “Statistics and secret leakage”, FC 2000, Lect. Notes Comput. Sci., 1972, 2001, 157–173

[5] Brier E., Clavier C., Olivier F., “Correlation power analysis with a leakage model”, CHES 2004, Lect. Notes Comput. Sci., 3156, 2004, 16–29 | Zbl

[6] Messerges T. S., “Securing the AES finalists against power analysis attacks”, FSE 2001, Lect. Notes Comput. Sci., 1978, 2001, 150–164 | Zbl

[7] Rivain M., Dottax E., Prouff E., “Block ciphers implementations provably secure against second order side channel analysis”, FSE 2008, Lect. Notes Comput. Sci., 5086, 2008, 127–143 | Zbl

[8] Gerard B., Grosso V., Naya-Plasencia M., Standaert F.-X., “Block ciphers that are easier to mask: How far can we go”, CHES 2013, Lect. Notes Comput. Sci., 8086, 2013, 383–399

[9] Fei Y., Luo Q., Ding A. A., “A statistical model for DPA with novel algorithmic confusion analysis”, CHES 2012, Lect. Notes Comput. Sci., 7428, 2012, 233–250

[10] Fei Y., Ding A. A., Lao J., Zhang L., A statistics-based fundamental model for side-channel attack analysis, https://eprint.iacr.org/2014/152.pdf

[11] Debraize B., “Efficient and provably secure methods for switching from arithmetic to Boolean masking”, CHES 2012, Lect. Notes Comput. Sci., 7428, 2012, 107–121 | Zbl

[12] Doget J., Prouff E., Rivain M., Standaert F.-X., “Univariate side channel attacks and leakage modelling”, J. Cryptographic Engineering, 1:2 (2011), 123–144 | DOI

[13] Mangard S., Oswald E., Standaert F.-X., “One for all–all for one: unifying standard DPA attacks”, IET Information Security, 5 (2011), 100–110 | DOI

[14] Standaert F.-X., Malkin T. G., Yung M., “A unified framework for the analysis of side-channel attacks”, EUROCRYPT 2009, Lect. Notes Comput. Sci., 5479, 2009, 443–461 | MR | Zbl

[15] Whitnall C., Oswald E., “A fair evaluation framework for comparing side-channel distinguishers”, J. Cryptographic Engineering, 1:2 (2011), 145–160 | DOI

[16] Duc A., Dziembowski S., Faust S., Unifying leakage models: from probing attacks to noisy leakage, https://eprint.iacr.org/2014/079.pdf | MR

[17] Rivain M., Prouff E., Provably secure higher-order masking of AES, https://eprint.iacr.org/2010/441.pdf

[18] Rivain M., Prouff E., Doget J., “Higher-order masking and shuffling for software implementations of block ciphers”, CHES 2009, Lect. Notes Comput. Sci., 5747, 2009, 171–188 | Zbl

[19] Gierlichs B., Batina L., Tuyls P., Preneel B., “Mutual information analysis”, CHES 2008, Lect. Notes Comput. Sci., 5154, 2008, 426–442

[20] Messerges T. S., Dabbish E. A., Sloan R. H., “Examining smart-card security under the threat of power analysis attacks”, IEEE Trans. on Computers, 51:5 (2002), 541–552 | DOI | MR

[21] Hajra S., Mukhopadhyay D., SNR to success rate: reaching the limit of non-profiling DPA, https://eprint.iacr.org/2013/865.pdf