Combinatorial properties of differentially $2$-uniform substitutions
Matematičeskie voprosy kriptografii, Tome 6 (2015) no. 1, pp. 159-179 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A combinatorial approach to the investigation and methods of construction of differentially $2$-uniform substitutions of the vector space over the finite field $F_2$ is proposed. Necessary and sufficient conditions for the family of sets associated with a differentially $2$-uniform substitution to be a symmetric block design are given. It is shown that a substitution is differentially $2$-uniform if and only if it is a solution of a similarity equations system connecting a family of translations with a family of unequal weights involutions. We suggest methods of construction of differentially $2$-uniform substitutions by means of the Cayley table of an additive group of finite field $F_{2^m}$.
@article{MVK_2015_6_1_a7,
     author = {V. N. Sachkov},
     title = {Combinatorial properties of differentially $2$-uniform substitutions},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {159--179},
     year = {2015},
     volume = {6},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2015_6_1_a7/}
}
TY  - JOUR
AU  - V. N. Sachkov
TI  - Combinatorial properties of differentially $2$-uniform substitutions
JO  - Matematičeskie voprosy kriptografii
PY  - 2015
SP  - 159
EP  - 179
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MVK_2015_6_1_a7/
LA  - ru
ID  - MVK_2015_6_1_a7
ER  - 
%0 Journal Article
%A V. N. Sachkov
%T Combinatorial properties of differentially $2$-uniform substitutions
%J Matematičeskie voprosy kriptografii
%D 2015
%P 159-179
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/MVK_2015_6_1_a7/
%G ru
%F MVK_2015_6_1_a7
V. N. Sachkov. Combinatorial properties of differentially $2$-uniform substitutions. Matematičeskie voprosy kriptografii, Tome 6 (2015) no. 1, pp. 159-179. http://geodesic.mathdoc.fr/item/MVK_2015_6_1_a7/

[1] Nyberg K., “Differentially uniform mappings for cryptography”, EUROCRYPT'93, Lect. Notes Comput. Sci., 765, 1994, 55–64 | MR | Zbl

[2] Sachkov V. N., “Probability distributions of number of configurations and discordances of random permutations from regular cyclic classes”, Probabilistic methods in Discrete Mathematics, VSP, Utreht, 2002, 23–40

[3] Sachkov V. N., “Tsepi Markova iteratsionnykh sistem preobrazovanii”, Trudy po diskretnoi matematike, 6, Fizmatlit, M., 2002, 165–183

[4] Sachkov V. N., Kombinatornye metody diskretnoi matematiki, Nauka, M., 1977

[5] Tang D., Carlet C., Tang X., Differentially 4-uniform bijections by permuting the inverse functions, Cryptology ePrint Aechive, rep. 2013/639 | MR

[6] Carlet C., Charpin P., Zinoviev V., “Codes, bent functions and permutations suitable for DES-like cryptosystems”, Designs, Codes and Cryptography, 15:2 (1998), 125–156 | DOI | MR | Zbl

[7] Riordan Dzh., Vvedenie v kombinatornyi analiz, Izd-vo inostrannoi literatury, M., 1963