Permutation lattices of equivalence relations on the Cartesian products and systems of equations concordant with these lattices. I
Matematičeskie voprosy kriptografii, Tome 6 (2015) no. 1, pp. 135-158 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A description of $GA$-lattices previously introduced by the author is given and easily solved systems of equations concordant with these lattices are presented.
@article{MVK_2015_6_1_a6,
     author = {S. V. Polin},
     title = {Permutation lattices of equivalence relations on the {Cartesian} products and systems of equations concordant with these {lattices.~I}},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {135--158},
     year = {2015},
     volume = {6},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2015_6_1_a6/}
}
TY  - JOUR
AU  - S. V. Polin
TI  - Permutation lattices of equivalence relations on the Cartesian products and systems of equations concordant with these lattices. I
JO  - Matematičeskie voprosy kriptografii
PY  - 2015
SP  - 135
EP  - 158
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MVK_2015_6_1_a6/
LA  - ru
ID  - MVK_2015_6_1_a6
ER  - 
%0 Journal Article
%A S. V. Polin
%T Permutation lattices of equivalence relations on the Cartesian products and systems of equations concordant with these lattices. I
%J Matematičeskie voprosy kriptografii
%D 2015
%P 135-158
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/MVK_2015_6_1_a6/
%G ru
%F MVK_2015_6_1_a6
S. V. Polin. Permutation lattices of equivalence relations on the Cartesian products and systems of equations concordant with these lattices. I. Matematičeskie voprosy kriptografii, Tome 6 (2015) no. 1, pp. 135-158. http://geodesic.mathdoc.fr/item/MVK_2015_6_1_a6/

[1] Belousov V. D., Osnovy teorii kvazigrupp i lup, Nauka, M., 1967 | MR

[2] Belousov V. D., “Sistemy kvazigrupp s obobschennymi tozhdestvami”, Uspekhi matem. nauk, 20:1(121), 75–146 | MR | Zbl

[3] Glukhov M. M., “O metodakh postroeniya sistem ortogonalnykh kvazigrupp s ispolzovaniem grupp”, Matematicheskie voprosy kriptografii, 2:4 (2011), 5–24

[4] Gorchinskii Yu. N., “O gomomorfizmakh mnogoosnovnykh universalnykh algebr v svyazi s kriptograficheskimi primeneniyami”, Trudy po diskretnoi matematike, 1, TVP, M., 1977, 67–84 | MR | Zbl

[5] Grettser G., Obschaya teoriya reshetok, Mir, M., 1982 | MR

[6] Kon P., Universalnaya algebra, Mir, M., 1968 | MR

[7] Kurosh A. G., Lektsii po obschei algebre, Nauka, M., 1973 | MR

[8] Maltsev A. I., “K obschei teorii algebraicheskikh sistem”, Matem. sb. (novaya seriya), 35(77):1 (1954), 3–20 | MR | Zbl

[9] Polin S. V., “Reshenie uravnenii metodom posledovatelnogo gruppirovaniya i ego optimizatsiya”, Matematicheskie voprosy kriptografii, 3:1 (2012), 97–123

[10] Polin S. V., “Sistemy uravnenii i reshetki kongruentsii universalnykh algebr”, Matematicheskie voprosy kriptografii, 4:4 (2013), 109–144

[11] Polin S. V., “Perestanovochnye reshetki otnoshenii ekvivalentnosti dekartovykh proizvedenii”, Matematicheskie voprosy kriptografii, 5:3 (2014), 81–116

[12] Kharari F., Teoriya grafov, Mir, M., 1973 | MR