Orbital derivatives on the residue ring. Part II. Probabilistic and combinatorial properties
Matematičeskie voprosy kriptografii, Tome 6 (2015) no. 1, pp. 117-133 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Probabilistic and combinatorial properties of higher order orbital derivatives on the residue ring are considered. In particular, higher order orbital derivatives are given for two classes of mappings. The first class is used in block ciphers; the second class is a subset of the wreath product of permutation groups.
@article{MVK_2015_6_1_a5,
     author = {B. A. Pogorelov and M. A. Pudovkina},
     title = {Orbital derivatives on the residue ring. {Part~II.} {Probabilistic} and combinatorial properties},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {117--133},
     year = {2015},
     volume = {6},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2015_6_1_a5/}
}
TY  - JOUR
AU  - B. A. Pogorelov
AU  - M. A. Pudovkina
TI  - Orbital derivatives on the residue ring. Part II. Probabilistic and combinatorial properties
JO  - Matematičeskie voprosy kriptografii
PY  - 2015
SP  - 117
EP  - 133
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MVK_2015_6_1_a5/
LA  - ru
ID  - MVK_2015_6_1_a5
ER  - 
%0 Journal Article
%A B. A. Pogorelov
%A M. A. Pudovkina
%T Orbital derivatives on the residue ring. Part II. Probabilistic and combinatorial properties
%J Matematičeskie voprosy kriptografii
%D 2015
%P 117-133
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/MVK_2015_6_1_a5/
%G ru
%F MVK_2015_6_1_a5
B. A. Pogorelov; M. A. Pudovkina. Orbital derivatives on the residue ring. Part II. Probabilistic and combinatorial properties. Matematičeskie voprosy kriptografii, Tome 6 (2015) no. 1, pp. 117-133. http://geodesic.mathdoc.fr/item/MVK_2015_6_1_a5/

[1] Lai X., “Higher order derivatives and differential cryptanalysis”, Proc. Symp. on Communication, Coding and Cryptography, 1994, 227–233 | Zbl

[2] Markov A. A., Ischislenie konechnykh raznostei, 2 izd., Odessa, 1910

[3] Berezin I. S., Zhidkov N. P., Metody vychislenii, v. 1–2, 3 izd., Nauka, M., 1966 | MR

[4] Gelfond A. O., Ischislenie konechnykh raznostei, Nauka, M., 1967 | MR

[5] Sachkov V. N., Vvedenie v kombinatornye metody diskretnoi matematiki, MTsNMO, M., 2004

[6] Jaworski J., Tyksinski T., “Bounds for differential probabilities in even order Abelian groups”, Tatra Mount. Math. Publ., 4 (2008), 33–46 | MR

[7] Pogorelov B. A., Pudovkina M. A., “Orbitalnye proizvodnye nad koltsom vychetov. Chast I. Obschie svoistva”, Matematicheskie voprosy kriptografii, 5:4 (2014), 99–127

[8] Pogorelov B. A., Pudovkina M. A., “Faktorstruktury preobrazovanii”, Matematicheskie voprosy kriptografii, 3:3 (2002), 81–104 | MR

[9] Cheremushkin A. V., “Additivnyi podkhod k opredeleniyu stepeni nelineinosti diskretnoi funktsii”, Prikladnaya diskretnaya matematika, 8:2 (2010), 22–33