The complexity of initial state recovery for a class of filter generators
Matematičeskie voprosy kriptografii, Tome 6 (2015) no. 1, pp. 109-116
Cet article a éte moissonné depuis la source Math-Net.Ru
A recovery problem for the initial state of the $m$-th order recurrent sequence from the output values of filter function $F$. Under natural conditions on the feedback function $f$ and filter function $F$ the complexity of initial state recovery from linear (in $m$) number of output values is shown to be linear in $m$. Coefficients of these linear functions are defined by the cardinalities of alphabet of output values, alphabet of input sequence elements and numbers of essential arguments of functions $f$ and $F$.
@article{MVK_2015_6_1_a4,
author = {F. M. Malyshev},
title = {The complexity of initial state recovery for a~class of filter generators},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {109--116},
year = {2015},
volume = {6},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MVK_2015_6_1_a4/}
}
F. M. Malyshev. The complexity of initial state recovery for a class of filter generators. Matematičeskie voprosy kriptografii, Tome 6 (2015) no. 1, pp. 109-116. http://geodesic.mathdoc.fr/item/MVK_2015_6_1_a4/
[1] Shnaier B., Prikladnaya kriptografiya. Protokoly, algoritmy, iskhodnye teksty na yazyke SI, TRIUMF, M., 2003
[2] Malyshev F. M., “Porozhdayuschie nabory elementov rekurrentnykh posledovatelnostei”, Trudy po diskretnoi matematike, 11, no. 2, 2008, 86–111