@article{MVK_2015_6_1_a1,
author = {G. I. Ivchenko and Yu. I. Medvedev and V. A. Mironova},
title = {Krawtchouk polynomials and their applications in cryptography and coding theory},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {33--56},
year = {2015},
volume = {6},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MVK_2015_6_1_a1/}
}
TY - JOUR AU - G. I. Ivchenko AU - Yu. I. Medvedev AU - V. A. Mironova TI - Krawtchouk polynomials and their applications in cryptography and coding theory JO - Matematičeskie voprosy kriptografii PY - 2015 SP - 33 EP - 56 VL - 6 IS - 1 UR - http://geodesic.mathdoc.fr/item/MVK_2015_6_1_a1/ LA - ru ID - MVK_2015_6_1_a1 ER -
G. I. Ivchenko; Yu. I. Medvedev; V. A. Mironova. Krawtchouk polynomials and their applications in cryptography and coding theory. Matematičeskie voprosy kriptografii, Tome 6 (2015) no. 1, pp. 33-56. http://geodesic.mathdoc.fr/item/MVK_2015_6_1_a1/
[1] Krawtchouk M., “Sur une generalization des polynomes d'Hermite”, Comptes Rendus de l'Acad. Des Sci., 189:17 (1929), 620–622 | Zbl
[2] Canteaut A., Videau M., “Symmetric Boolean function”, IEEE Trans. Inf. Theory, 51:8 (2005), 2791–2811 | DOI | MR | Zbl
[3] Sarkar S., Maitra S., “Efficient search for symmetric Boolean functions under constraints on Walsh spectra values”, J. Comb. Math. and Comb. Comput., 68 (2009), 163–191 | MR | Zbl
[4] Mouffron M., “Balanced alternating and symmetric functions over finite sets”, Workshop on Boolean Functions: Cryptography and Applications (BFCA'08), Copenhagen, Denmark, 2008, 27–44 | MR
[5] Ivchenko G. I., Medvedev Yu. I., Mironova V. A., “Analiz spektra sluchainykh simmetricheskikh bulevykh funktsii”, Matematicheskie voprosy kriptografii, 4:1 (2013), 59–76
[6] Delsart F., Algebraicheskii podkhod k skhemam otnoshenii teorii kodirovaniya, per. s angl., Mir, M., 1976 | MR
[7] Feinsilver Ph., Fitzgerald R., “The spectrum of symmetric Krawtchouk matrices”, Linear algebra and its appl., 235 (1996), 121–139 | DOI | MR | Zbl
[8] Segë G., Ortogonalnye mnogochleny, FIZMATLIT, M., 1962
[9] Mak-Vilyams F. Dzh., Sloen N. Dzh. A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, M., 1979
[10] Sidelnikov V. M., Teoriya kodirovaniya, FIZMATLIT, M., 2008
[11] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, Nauka, M., 1965
[12] Cusick Th. W., Stanica P., Cryptographic Boolean Functions and Applications, AP Elsevier, Amsterdam etc., 2009 | MR | Zbl
[13] Delsarte Ph., “Four fundamental parameters of a code and their combinatorial significance”, Inf. and Control, 23:5 (1973), 407–438 | DOI | MR | Zbl
[14] Van Tilborg H. C. A., Uniformly packed codes, Ph. D. Thesis, Eindhoven, 1976 | MR
[15] Levenstein V. I., “Universal bounds for codes and designs”, Handbook of Coding theory, Amst., 1998, 499–648 | MR
[16] Feinsilver Ph., Schott R., “Krawtchouk polynomials and finite probability theory”, Probability Measures on Groups, X, Plenum, 1991, 129–135 | DOI | MR | Zbl
[17] Savicky P. On the bent Boolean functions that are symmetric, European J. Comb., 15 (1994), 407–410 | DOI | MR | Zbl
[18] Khokhlov V. I., “Mnogochleny, ortogonalnye otnositelno polinomialnogo raspredeleniya, i faktorialno-stepennoifor malizm”, Teoriya veroyatn. i ee primen., 46:3 (2001), 585–594 | DOI | MR | Zbl
[19] Khokhlov V. I., “Mnogochleny Ermita i mnogochleny Puassona–Sharle kak klassicheskie predely mnogochlenov Kravchuka”, Obozr. prikl. i promyshl. matem., 16:5 (2005), 937–940
[20] Krasikov I., Litsyn S., “On integral zeros of Krawtchouk polynomials”, J. Comb. Theory, Ser. A, 74 (1996), 132–138 | DOI | MR
[21] Stanley R. P., “Reconstruction from vertex-switching”, J. Comb. Theory, Ser. B, 38 (1985), 132–138 | DOI | MR | Zbl