Krawtchouk polynomials and their applications in cryptography and coding theory
Matematičeskie voprosy kriptografii, Tome 6 (2015) no. 1, pp. 33-56 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Basic properties of the Krawtchouk polynomials are reviewed, some new results which are of interest for the theory and applications are obtained. We study analytic, number-theoretic properties and asymptotic behaviour of the Krawtchouk polynomials under different relations between their parameters along with the probabilistic properties of polynomials with random parameters. Applications of the Krawtchouk polynomials to the cryptographic properties of Boolean functions and coding theory are discussed.
@article{MVK_2015_6_1_a1,
     author = {G. I. Ivchenko and Yu. I. Medvedev and V. A. Mironova},
     title = {Krawtchouk polynomials and their applications in cryptography and coding theory},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {33--56},
     year = {2015},
     volume = {6},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2015_6_1_a1/}
}
TY  - JOUR
AU  - G. I. Ivchenko
AU  - Yu. I. Medvedev
AU  - V. A. Mironova
TI  - Krawtchouk polynomials and their applications in cryptography and coding theory
JO  - Matematičeskie voprosy kriptografii
PY  - 2015
SP  - 33
EP  - 56
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MVK_2015_6_1_a1/
LA  - ru
ID  - MVK_2015_6_1_a1
ER  - 
%0 Journal Article
%A G. I. Ivchenko
%A Yu. I. Medvedev
%A V. A. Mironova
%T Krawtchouk polynomials and their applications in cryptography and coding theory
%J Matematičeskie voprosy kriptografii
%D 2015
%P 33-56
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/MVK_2015_6_1_a1/
%G ru
%F MVK_2015_6_1_a1
G. I. Ivchenko; Yu. I. Medvedev; V. A. Mironova. Krawtchouk polynomials and their applications in cryptography and coding theory. Matematičeskie voprosy kriptografii, Tome 6 (2015) no. 1, pp. 33-56. http://geodesic.mathdoc.fr/item/MVK_2015_6_1_a1/

[1] Krawtchouk M., “Sur une generalization des polynomes d'Hermite”, Comptes Rendus de l'Acad. Des Sci., 189:17 (1929), 620–622 | Zbl

[2] Canteaut A., Videau M., “Symmetric Boolean function”, IEEE Trans. Inf. Theory, 51:8 (2005), 2791–2811 | DOI | MR | Zbl

[3] Sarkar S., Maitra S., “Efficient search for symmetric Boolean functions under constraints on Walsh spectra values”, J. Comb. Math. and Comb. Comput., 68 (2009), 163–191 | MR | Zbl

[4] Mouffron M., “Balanced alternating and symmetric functions over finite sets”, Workshop on Boolean Functions: Cryptography and Applications (BFCA'08), Copenhagen, Denmark, 2008, 27–44 | MR

[5] Ivchenko G. I., Medvedev Yu. I., Mironova V. A., “Analiz spektra sluchainykh simmetricheskikh bulevykh funktsii”, Matematicheskie voprosy kriptografii, 4:1 (2013), 59–76

[6] Delsart F., Algebraicheskii podkhod k skhemam otnoshenii teorii kodirovaniya, per. s angl., Mir, M., 1976 | MR

[7] Feinsilver Ph., Fitzgerald R., “The spectrum of symmetric Krawtchouk matrices”, Linear algebra and its appl., 235 (1996), 121–139 | DOI | MR | Zbl

[8] Segë G., Ortogonalnye mnogochleny, FIZMATLIT, M., 1962

[9] Mak-Vilyams F. Dzh., Sloen N. Dzh. A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, M., 1979

[10] Sidelnikov V. M., Teoriya kodirovaniya, FIZMATLIT, M., 2008

[11] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, Nauka, M., 1965

[12] Cusick Th. W., Stanica P., Cryptographic Boolean Functions and Applications, AP Elsevier, Amsterdam etc., 2009 | MR | Zbl

[13] Delsarte Ph., “Four fundamental parameters of a code and their combinatorial significance”, Inf. and Control, 23:5 (1973), 407–438 | DOI | MR | Zbl

[14] Van Tilborg H. C. A., Uniformly packed codes, Ph. D. Thesis, Eindhoven, 1976 | MR

[15] Levenstein V. I., “Universal bounds for codes and designs”, Handbook of Coding theory, Amst., 1998, 499–648 | MR

[16] Feinsilver Ph., Schott R., “Krawtchouk polynomials and finite probability theory”, Probability Measures on Groups, X, Plenum, 1991, 129–135 | DOI | MR | Zbl

[17] Savicky P. On the bent Boolean functions that are symmetric, European J. Comb., 15 (1994), 407–410 | DOI | MR | Zbl

[18] Khokhlov V. I., “Mnogochleny, ortogonalnye otnositelno polinomialnogo raspredeleniya, i faktorialno-stepennoifor malizm”, Teoriya veroyatn. i ee primen., 46:3 (2001), 585–594 | DOI | MR | Zbl

[19] Khokhlov V. I., “Mnogochleny Ermita i mnogochleny Puassona–Sharle kak klassicheskie predely mnogochlenov Kravchuka”, Obozr. prikl. i promyshl. matem., 16:5 (2005), 937–940

[20] Krasikov I., Litsyn S., “On integral zeros of Krawtchouk polynomials”, J. Comb. Theory, Ser. A, 74 (1996), 132–138 | DOI | MR

[21] Stanley R. P., “Reconstruction from vertex-switching”, J. Comb. Theory, Ser. B, 38 (1985), 132–138 | DOI | MR | Zbl