Construction of substitutions by means of variationally-coordinate polynomial functions over the primary residue ring
Matematičeskie voprosy kriptografii, Tome 6 (2015) no. 1, pp. 5-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider methods permitting to construct substitutions over the primary residue ring by means of variationally-coordinate polynomial functions. Our paper generalizes known results on invertible polynomial functions, polynomial $n$-quasigroups and bijective polynomial vectorial functions.
@article{MVK_2015_6_1_a0,
     author = {M. V. Zaets},
     title = {Construction of substitutions by means of variationally-coordinate polynomial functions over the primary residue ring},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {5--32},
     year = {2015},
     volume = {6},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2015_6_1_a0/}
}
TY  - JOUR
AU  - M. V. Zaets
TI  - Construction of substitutions by means of variationally-coordinate polynomial functions over the primary residue ring
JO  - Matematičeskie voprosy kriptografii
PY  - 2015
SP  - 5
EP  - 32
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MVK_2015_6_1_a0/
LA  - ru
ID  - MVK_2015_6_1_a0
ER  - 
%0 Journal Article
%A M. V. Zaets
%T Construction of substitutions by means of variationally-coordinate polynomial functions over the primary residue ring
%J Matematičeskie voprosy kriptografii
%D 2015
%P 5-32
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/MVK_2015_6_1_a0/
%G ru
%F MVK_2015_6_1_a0
M. V. Zaets. Construction of substitutions by means of variationally-coordinate polynomial functions over the primary residue ring. Matematičeskie voprosy kriptografii, Tome 6 (2015) no. 1, pp. 5-32. http://geodesic.mathdoc.fr/item/MVK_2015_6_1_a0/

[1] Anashin V. S., “Ravnomerno raspredelennye posledovatelnosti tselykh $p$-adicheskikh chisel”, Diskretnaya matematika, 1:4 (2002), 3–64 | DOI | MR | Zbl

[2] Anashin V. S., “Uniformly distributed sequences in computer algebra or how to construct random number generators”, J. Math. Sci. (New York), 89:4 (1998), 1355–1390 | DOI | MR | Zbl

[3] Lausch H., Nobauer W., Algebra of Polynomials, North-Holland Publ. Co, Amsterdam, 1973 | MR | Zbl

[4] McDonald B. R., Finite Rings with Identity, Marcel Dekker, New York, 1974 | MR | Zbl

[5] Nobauer W., “Zur Theorie der Polynomtransformationen und Permutationspolynome”, Math. Ann., 157 (1964), 332–342 | DOI | MR | Zbl

[6] Samardziska S., Markovski S., “Polynomial $n$-ary quasigroups”, Math. Maced., 5 (2007), 77–81 | MR | Zbl

[7] Zhang Q., “Polynomial functions and permutation polynomials over some finite commutative rings”, J. Number Theory, 105 (2004), 192–202 | DOI | MR | Zbl

[8] Belousov V. D., Osnovy teorii kvazigrupp, Nauka, M., 1967 | MR

[9] elousov V. D., $n$-arnye kvazigruppy, Shtiintsa, Kishinev, 1972, 225 pp.

[10] Zaets M. V., “Reshenie sistem VKP-uravnenii metodom pokoordinatnoi linearizatsii nad primarnym koltsom vychetov”, Tezisy XLI Mezhdunar. konf. i XI Mezhdunar. konf. molodykh uchenykh “Inf. tekhnol. v nauke, obrazov., telekommun. i biznese IT+SE13”, Vestnik Moskovskogo un-ta im. S. Yu. Vitte. Ser. 1, Prilozhenie, 2013, 155–157

[11] Zaets M. V., Nikonov V. G., Shishkov A. B., “Klass funktsii s variatsionno-koordinatnoi polinomialnostyu nad koltsom $\mathbb Z_{2^m}$ i ego obobschenie”, Matem. voprosy kriptografii, 4:3 (2013), 21–47

[12] Zaets M. V., Nikonov V. G., Shishkov A. B., “Funktsii s variatsionnokoordinatnoi polinomialnostyu i ikh svoistva”, Otkrytoe obrazovanie, 2012, no. 3, 57–61

[13] Nechaev A. A., “Polinomialnye preobrazovaniya konechnykh kommutativnykh lokalnykh kolets glavnykh idealov”, Mat. zametki, 27:6 (1980), 885–897 | MR | Zbl

[14] Zaets M. V., “O klasse variatsionno-koordinatno polinomialnykh funktsii nad primarnym koltsom vychetov”, PDM, 2014, no. 3, 12–27

[15] Zaets M. V., “Koordinatno-lineino razreshimye funktsii nad primarnym koltsom vychetov i metod pokoordinatnoi linearizatsii”, Setevoi nauchnyi zhurnal “Obrazovatelnye resursy i tekhnologii”, 2014, no. 2(5), 59–72