Permutation lattices of equivalence relations on Cartesian products
Matematičeskie voprosy kriptografii, Tome 5 (2014) no. 3, pp. 81-116 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Necessary conditions for the equivalence relation $\theta$ on the set $A$ to be an element of some $GA$-lattice are obtained.
@article{MVK_2014_5_3_a4,
     author = {S. V. Polin},
     title = {Permutation lattices of equivalence relations on {Cartesian} products},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {81--116},
     year = {2014},
     volume = {5},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2014_5_3_a4/}
}
TY  - JOUR
AU  - S. V. Polin
TI  - Permutation lattices of equivalence relations on Cartesian products
JO  - Matematičeskie voprosy kriptografii
PY  - 2014
SP  - 81
EP  - 116
VL  - 5
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2014_5_3_a4/
LA  - ru
ID  - MVK_2014_5_3_a4
ER  - 
%0 Journal Article
%A S. V. Polin
%T Permutation lattices of equivalence relations on Cartesian products
%J Matematičeskie voprosy kriptografii
%D 2014
%P 81-116
%V 5
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2014_5_3_a4/
%G ru
%F MVK_2014_5_3_a4
S. V. Polin. Permutation lattices of equivalence relations on Cartesian products. Matematičeskie voprosy kriptografii, Tome 5 (2014) no. 3, pp. 81-116. http://geodesic.mathdoc.fr/item/MVK_2014_5_3_a4/

[1] Belousov V. D., Osnovy teorii kvazigrupp i lup, Nauka, M., 1967 | MR | Zbl | Zbl

[2] Gorchinskii Yu. N., “O gomomorfizmakh mnogoosnovnykh universalnykh algebr v svyazi s kriptograficheskimi primeneniyami”, Trudy po diskretnoi matematike, 1, TVP, M., 1977, 67–84 | MR | Zbl

[3] Grettser G., Obschaya teoriya reshetok, “Mir”, M., 1982 | MR

[4] Kon P., Universalnaya algebra, “Mir”, M., 1968 | MR

[5] Kurosh A. G., Lektsii po obschei algebre, “Nauka”, M., 1973 | MR

[6] Polin S. V., “Sistemy uravnenii i reshetki kongruentsii universalnykh algebr”, Matematicheskie voprosy kriptografii, 4:4 (2013), 109–144