The duality of differential and linear methods in cryptography
Matematičeskie voprosy kriptografii, Tome 5 (2014) no. 3, pp. 35-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that the search for differential and linear probability relations for general type encryption transformations may be realized by the unified approach. We present examples of the construction of differential and linear relations for Feistel schemes and XSL-networks by the same sequence of operations, with inclusion in the input data tables of the local differential characteristics in the first case and tables of local linear characteristics in the second case.
@article{MVK_2014_5_3_a2,
     author = {F. M. Malyshev},
     title = {The duality of differential and linear methods in cryptography},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {35--47},
     year = {2014},
     volume = {5},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2014_5_3_a2/}
}
TY  - JOUR
AU  - F. M. Malyshev
TI  - The duality of differential and linear methods in cryptography
JO  - Matematičeskie voprosy kriptografii
PY  - 2014
SP  - 35
EP  - 47
VL  - 5
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2014_5_3_a2/
LA  - ru
ID  - MVK_2014_5_3_a2
ER  - 
%0 Journal Article
%A F. M. Malyshev
%T The duality of differential and linear methods in cryptography
%J Matematičeskie voprosy kriptografii
%D 2014
%P 35-47
%V 5
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2014_5_3_a2/
%G ru
%F MVK_2014_5_3_a2
F. M. Malyshev. The duality of differential and linear methods in cryptography. Matematičeskie voprosy kriptografii, Tome 5 (2014) no. 3, pp. 35-47. http://geodesic.mathdoc.fr/item/MVK_2014_5_3_a2/

[1] Biham E., Shamir A., “Differential cryptoanalysis of DES-like cryptosystems”, Proc. CRYPTO' 90, Lect. Notes Comput. Sci., 537, 1991, 2–21 | DOI | MR | Zbl

[2] Matsui M., “Linear cryptanalysis method for DES cipher”, Proc. EUROCRYPT' 93, Lect. Notes Comput. Sci., 765, 1994, 386–397 | DOI | Zbl

[3] Matsui M., “On correlation between the order of $S$-boxes and the strength of DES”, Proc. EUROCRYPT' 94, Lect. Notes Comput. Sci., 950, 1995, 366–375 | DOI | MR | Zbl

[4] Daemen J., Cipher and hash function design strategies based on linear and differential cryptanalysis, Doctoral Dissertation, K. U. Leuven, March, 1995

[5] Daemen J., Rijmen V., The Design of Rijndael: AES – The Advanced Encryption Standard, Springer Verlag, 2002 | MR

[6] Rijmen V., Cryptanalysis and design of iterated block ciphers, Doctoral Dissertation, Katholieke Univ. Leuven, 1997