Nonabsolute bounds for incomplete exponential sums of elements of linear recurrent sequences and their applications
Matematičeskie voprosy kriptografii, Tome 5 (2014) no. 3, pp. 17-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We establish several upper bounds for some classes of incomplete exponential sums over Galois rings. We apply these results to cross-correlation coefficients and distribution properties of linear recurrent sequences.
@article{MVK_2014_5_3_a1,
     author = {O. V. Kamlovsky},
     title = {Nonabsolute bounds for incomplete exponential sums of elements of linear recurrent sequences and their applications},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {17--34},
     year = {2014},
     volume = {5},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2014_5_3_a1/}
}
TY  - JOUR
AU  - O. V. Kamlovsky
TI  - Nonabsolute bounds for incomplete exponential sums of elements of linear recurrent sequences and their applications
JO  - Matematičeskie voprosy kriptografii
PY  - 2014
SP  - 17
EP  - 34
VL  - 5
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2014_5_3_a1/
LA  - ru
ID  - MVK_2014_5_3_a1
ER  - 
%0 Journal Article
%A O. V. Kamlovsky
%T Nonabsolute bounds for incomplete exponential sums of elements of linear recurrent sequences and their applications
%J Matematičeskie voprosy kriptografii
%D 2014
%P 17-34
%V 5
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2014_5_3_a1/
%G ru
%F MVK_2014_5_3_a1
O. V. Kamlovsky. Nonabsolute bounds for incomplete exponential sums of elements of linear recurrent sequences and their applications. Matematičeskie voprosy kriptografii, Tome 5 (2014) no. 3, pp. 17-34. http://geodesic.mathdoc.fr/item/MVK_2014_5_3_a1/

[1] Korobov N. M., “Raspredelenie nevychetov i pervoobraznykh kornei v rekurrentnykh ryadakh”, Doklady AN SSSR, 88:4 (1953), 603–606 | MR | Zbl

[2] Lidl R., Niderraiter G., Konechnye polya, Mir, M., 1988, 822 pp. | MR | Zbl

[3] Nechaev V. I., “Raspredelenie znakov v posledovatelnosti pryamougolnykh matrits nad konechnym polem”, Trudy MIAN, 218, 1997, 335–342 | MR | Zbl

[4] Niederreiter H., “Distribution properties of feedback shift register sequences”, Probl. Control and Inform. Theory, 15:1 (1986), 19–34 | MR | Zbl

[5] Sarwate D. V., “An upper bound on the aperiodic autocorrelation function for a maximal-length sequence”, IEEE Trans. Inf. Theory, 30:4 (1984), 685–687 | DOI | MR | Zbl

[6] Sidelnikov V. M., “Otsenki dlya chisla poyavlenii znakov na otrezkakh rekurrentnoi posledovatelnosti nad konechnym polem”, Diskret. matem., 3:2 (1991), 87–95 | MR | Zbl

[7] Niederreiter H., Shparlinski I. E., “On the distribution of inversive congruential pseudorandom numbers in path of the period”, Math. Comput., 70:236 (2001), 1569–1574 | DOI | MR | Zbl

[8] Niederreiter H., Winterhof A., “Multiplicative character sums for nonlinear recurring sequences”, Acta Arith., 113:3 (2004), 299–305 | DOI | MR

[9] Burde K., “Verteilungseigenschaften von potenzresten”, J. Reine und Angew. Math., 249 (1971), 133–172 | MR | Zbl

[10] Kamlovskii O. V., “Otsenki chastot poyavleniya nulei v lineinykh rekurrentnykh posledovatelnostyakh vektorov”, Chebyshevskii sbornik, 6:1 (2005), 135–146 | MR

[11] Kamlovskii O. V. Metod V. M., “Sidelnikova dlya otsenki chisla znakov na otrezkakh lineinykh rekurrentnykh posledovatelnostei nad koltsami Galua”, Matem. zametki, 91:3 (2012), 371–382 | DOI | MR | Zbl

[12] Kamlovskii O. V., “Utochnenie otsenok dlya chisla poyavlenii elementov v lineinykh rekurrentnykh posledovatelnostyakh nad koltsami Galua”, Fund. i prikl. matem., 17:7 (2012), 97–115 | MR

[13] Korobov N. M., Trigonometricheskie summy i ikh prilozheniya, Nauka, M., 1989, 240 pp. | MR | Zbl

[14] Bilyak I. B., “Otsenki chisla poyavlenii elementov na otrezkakh lineinykh rekurrentnykh posledovatelnostei”, Prikl. diskret. matem., 2013, no. 1(19), 5–13

[15] Nechaev A. A., “Kod Kerdoka v tsiklicheskoi forme”, Diskret. matem., 1:4 (1989), 123–139 | MR | Zbl

[16] Nechaev A. A., “Tsiklovye tipy lineinykh podstanovok nad konechnymi kommutativnymi koltsami”, Matem. sb., 184:3 (1993), 21–56 | MR | Zbl

[17] Kumar P. V., Helleseth T., Calderbank A. R., “An upper bound for Weil exponential sums over Galois rings and applications”, IEEE Trans. Inform. Theory, 41:2 (1995), 456–468 | DOI | MR | Zbl

[18] Shanbhag A. G., Kumar P. V., Helleseth T., “Upper bound for a hybrid sum over Galois rings with applications to aperiodic correlation of some $q$-ary sequences”, IEEE Trans. Inform. Theory, 42:1 (1996), 250–254 | DOI | MR | Zbl

[19] Nechaev V. I., Stepanova L. L., “Raspredelenie nevychetov i pervoobraznykh kornei v rekurrentnykh posledovatelnostyakh nad polem algebraicheskikh chisel”, Uspekhi matem. nauk, 20:3 (1965), 197–203 | MR | Zbl

[20] Shparlinskii I. E., “Raspredelenie nevychetov i pervoobraznykh kornei v rekurrentnykh posledovatelnostyakh”, Matem zametki, 24:5 (1978), 603–613 | MR | Zbl

[21] Shparlinskii I. E., “O raspredelenii znachenii rekurrentnykh posledovatelnostei”, Problemy peredachi informatsii, 25:2 (1989), 46–53 | MR | Zbl