On a property of quadratic Boolean functions
Matematičeskie voprosy kriptografii, Tome 5 (2014) no. 2, pp. 79-85
Cet article a éte moissonné depuis la source Math-Net.Ru
Let a Boolean function $f$ in $2k$ variables be affine on an affine subspace of dimension $k$ if and only if $f$ is affine on any its shift. Then it is proved that algebraic degree of $f$ may be more than 2 only if there is no affine subspace of dimension $k$ that $f$ is affine on it.
@article{MVK_2014_5_2_a8,
author = {N. A. Kolomeec},
title = {On a~property of quadratic {Boolean} functions},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {79--85},
year = {2014},
volume = {5},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MVK_2014_5_2_a8/}
}
N. A. Kolomeec. On a property of quadratic Boolean functions. Matematičeskie voprosy kriptografii, Tome 5 (2014) no. 2, pp. 79-85. http://geodesic.mathdoc.fr/item/MVK_2014_5_2_a8/
[1] Kolomeec N. A., Pavlov A. V., “Properties of Bent functions that are on the minimal possible distance”, Discrete Applied Mathematics, 2009, no. 4, 5–20 (in Russian)
[2] Logachev O. A., Salnikov A. A., Yaschenko V. V., Boolean functions in coding theory and cryptology, MCCME, Moscow, 2004, 470 pp. (in Russian) | MR
[3] McFarland R. L., “A family of difference sets in non-cyclic groups”, J. Combin. Theory, Ser. A, 15 (1973), 1–10 | DOI | MR | Zbl
[4] Rothaus O., “On bent functions”, J. Combin. Theory, Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl
[5] Tokareva N. N., Nonlinear Boolean functions: bent functions and their generalizations, LAP LAMBERT Academic Publishing, Saarbrucken, 2011, 180 pp. (In Russian) | MR