@article{MVK_2014_5_2_a6,
author = {S. N. Zaitsev},
title = {Description of maximal skew linear recurrences in terms of multipliers},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {57--70},
year = {2014},
volume = {5},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MVK_2014_5_2_a6/}
}
S. N. Zaitsev. Description of maximal skew linear recurrences in terms of multipliers. Matematičeskie voprosy kriptografii, Tome 5 (2014) no. 2, pp. 57-70. http://geodesic.mathdoc.fr/item/MVK_2014_5_2_a6/
[1] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, v. 2, Gelios ARV, Moscow, 2003
[2] Kuzmin A. S., Kurakin V. L., Nechaev A. A., Galois rings as application to the codes and linear recurrences (to appear)
[3] Goltvanitsa M. A., Zaitsev S. N., Nechaev A. A., “Skew linear recurrences of maximal period over Galois rings”, Fundamental and applied mathematics, 17:3 (2011/2012), 5–23 | MR
[4] Goltvanitsa M. A., Zaitsev S. N., Nechaev A. A., “Skew LRS of maximal period over Galois rings”, Workshop on Current Trends in Cryptology, 2012 | MR
[5] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over ring and modules”, J. Math. Sci., 76:6 (1995), 2793–2915 | DOI | MR | Zbl
[6] Nechaev A. A., Kuzmin A. S., Kurakin V. L., “Structural, analitical and statistical properties of linear and polylinear recurrent sequences”, Tr. Diskr. Mat., 3, FIZMATLIT, Moscow, 2000, 155–194 | MR
[7] Kurakin V. L., “Berlekamp–Massey algorithm over finite rings, modules and bimodules”, Discrete mathematics, 10:4 (1998), 3–34 | DOI | MR | Zbl
[8] Nechaev A. A., “Finite rings with applications”, Handbook of Algebra, 5, ed. M. Hazewinkel, Elsevier B. V., 2008, 213–320 | DOI | MR | Zbl
[9] Nechaev A. A., “Finite rings of principal ideals”, Mat. USSR-Sb., 20:3 (1973), 364–382 | DOI | MR | Zbl
[10] McDonald B. R., Finite rings with identity, Markel Dekker, New York, 1974 | MR | Zbl
[11] Lidl R., Niederreiter H., Finite fields, Cambridge University Press, 1983 | MR | Zbl
[12] Nechaev A. A., “Kerdock's code in cyclic form”, Discrete Math. Appl., 1:4 (1991), 365–384 | DOI | MR | Zbl
[13] Nechaev A. A., “Linear recurrent sequences over commutative rings”, Discrete Math. Appl., 2:6 (1992), 659–683 | DOI | MR | Zbl
[14] Nechaev A. A., “Cycle types of linear substitutions over finite commutative rings”, Russian Acad. Sci. Sb. Math., 78:2 (1994), 283–311 | DOI | MR | Zbl
[15] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over rings and modules”, Journal of Mathematical Sciences, 76:6 (1995), 2793–2915 | DOI | MR | Zbl
[16] Kurakin V. L., Mikhalev A. V., Nechaev A. A., Tsypyschev V. N., “Linear and polylinear recurring sequences over abelian groups and modules”, J. Math. Sci., 102:6 (2000), 4598–4626 | MR | Zbl
[17] Tsaban B., Vishne U., “Efficient linear feedback shift registers with maximal period”, Finite Fields and Their Appl., 8:2 (2002), 256–267 | DOI | MR | Zbl
[18] Zeng G., Han W., He K., Word-oriented feedback shift register: $\sigma$-LFSR, Cryptology ePrint Archive: Report 2007/114, http://eprint.iacr.org/2007/114
[19] Zeng G., He K. C., Han W., “A trinomial type of $\sigma$-LFSR oriented toward software implementation”, Science in China, Series F-Inf. Sci., 50:3 (2007), 359–372 | MR | Zbl
[20] Zeng G., Yang Y., Han W., Fan S., “Word oriented cascade jump $\sigma$-LFSR”, AAECC 2009, LNCS, 5527, 2009, 127–136 | MR | Zbl
[21] Ghorpade S. R., Hasan S. U., Kumari M., “Primitive polynomials, Singer cycles, and word-oriented linear feedback shift registers”, Des. Codes Cryptogr., 58:2 (2011), 123–134 | DOI | MR | Zbl
[22] Ghorpade S. R., Ram S., “Block companion Singer cycles, primitive recursive vector sequences, and coprime polynomial pairs over finite fields”, Finite Fields and Their Appl., 17:5 (2011), 461–472 | DOI | MR | Zbl