Description of maximal skew linear recurrences in terms of multipliers
Matematičeskie voprosy kriptografii, Tome 5 (2014) no. 2, pp. 57-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $P=\mathrm{GF}(q)$ be a field, $F=\mathrm{GF}(q^n)$ be an extension of $P$. We construct a wide class of skew MP-polynomials over $F$ by the description of multipliers of skew MP LRS. For $P$-skew MP LRS $v$ over $F$ we call linear transformation $\psi$ (generalized) multiplier if there exists a number $l\geq0$ such that $\psi(v(i))=v(i+l)$, $i\geq0$. Denote by $\mathfrak M(v)^*$ the set of all multipliers of a skew MP LRS $v$, and $\mathfrak M(v)=\mathfrak M(v)^*\cup\{0\}$. It is proved that $\mathfrak M(v)$ is a field and $\mathfrak M(v)\cong F$ if and only if $v$ is linearized. Sufficient conditions for $\mathfrak M(v)\cong P$ are given. It is proved that for any $P$-skew MP LRS $v$ there exists a transformation $\psi$ such that the sequence $\psi(v)$ is $\mathfrak M(v)$-skew MP LRS of the same order, and for any field $K$ there exists MP LRS $v$ such that $\mathfrak M(v)\cong K$.
@article{MVK_2014_5_2_a6,
     author = {S. N. Zaitsev},
     title = {Description of maximal skew linear recurrences in terms of multipliers},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {57--70},
     year = {2014},
     volume = {5},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MVK_2014_5_2_a6/}
}
TY  - JOUR
AU  - S. N. Zaitsev
TI  - Description of maximal skew linear recurrences in terms of multipliers
JO  - Matematičeskie voprosy kriptografii
PY  - 2014
SP  - 57
EP  - 70
VL  - 5
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MVK_2014_5_2_a6/
LA  - en
ID  - MVK_2014_5_2_a6
ER  - 
%0 Journal Article
%A S. N. Zaitsev
%T Description of maximal skew linear recurrences in terms of multipliers
%J Matematičeskie voprosy kriptografii
%D 2014
%P 57-70
%V 5
%N 2
%U http://geodesic.mathdoc.fr/item/MVK_2014_5_2_a6/
%G en
%F MVK_2014_5_2_a6
S. N. Zaitsev. Description of maximal skew linear recurrences in terms of multipliers. Matematičeskie voprosy kriptografii, Tome 5 (2014) no. 2, pp. 57-70. http://geodesic.mathdoc.fr/item/MVK_2014_5_2_a6/

[1] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, v. 2, Gelios ARV, Moscow, 2003

[2] Kuzmin A. S., Kurakin V. L., Nechaev A. A., Galois rings as application to the codes and linear recurrences (to appear)

[3] Goltvanitsa M. A., Zaitsev S. N., Nechaev A. A., “Skew linear recurrences of maximal period over Galois rings”, Fundamental and applied mathematics, 17:3 (2011/2012), 5–23 | MR

[4] Goltvanitsa M. A., Zaitsev S. N., Nechaev A. A., “Skew LRS of maximal period over Galois rings”, Workshop on Current Trends in Cryptology, 2012 | MR

[5] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over ring and modules”, J. Math. Sci., 76:6 (1995), 2793–2915 | DOI | MR | Zbl

[6] Nechaev A. A., Kuzmin A. S., Kurakin V. L., “Structural, analitical and statistical properties of linear and polylinear recurrent sequences”, Tr. Diskr. Mat., 3, FIZMATLIT, Moscow, 2000, 155–194 | MR

[7] Kurakin V. L., “Berlekamp–Massey algorithm over finite rings, modules and bimodules”, Discrete mathematics, 10:4 (1998), 3–34 | DOI | MR | Zbl

[8] Nechaev A. A., “Finite rings with applications”, Handbook of Algebra, 5, ed. M. Hazewinkel, Elsevier B. V., 2008, 213–320 | DOI | MR | Zbl

[9] Nechaev A. A., “Finite rings of principal ideals”, Mat. USSR-Sb., 20:3 (1973), 364–382 | DOI | MR | Zbl

[10] McDonald B. R., Finite rings with identity, Markel Dekker, New York, 1974 | MR | Zbl

[11] Lidl R., Niederreiter H., Finite fields, Cambridge University Press, 1983 | MR | Zbl

[12] Nechaev A. A., “Kerdock's code in cyclic form”, Discrete Math. Appl., 1:4 (1991), 365–384 | DOI | MR | Zbl

[13] Nechaev A. A., “Linear recurrent sequences over commutative rings”, Discrete Math. Appl., 2:6 (1992), 659–683 | DOI | MR | Zbl

[14] Nechaev A. A., “Cycle types of linear substitutions over finite commutative rings”, Russian Acad. Sci. Sb. Math., 78:2 (1994), 283–311 | DOI | MR | Zbl

[15] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over rings and modules”, Journal of Mathematical Sciences, 76:6 (1995), 2793–2915 | DOI | MR | Zbl

[16] Kurakin V. L., Mikhalev A. V., Nechaev A. A., Tsypyschev V. N., “Linear and polylinear recurring sequences over abelian groups and modules”, J. Math. Sci., 102:6 (2000), 4598–4626 | MR | Zbl

[17] Tsaban B., Vishne U., “Efficient linear feedback shift registers with maximal period”, Finite Fields and Their Appl., 8:2 (2002), 256–267 | DOI | MR | Zbl

[18] Zeng G., Han W., He K., Word-oriented feedback shift register: $\sigma$-LFSR, Cryptology ePrint Archive: Report 2007/114, http://eprint.iacr.org/2007/114

[19] Zeng G., He K. C., Han W., “A trinomial type of $\sigma$-LFSR oriented toward software implementation”, Science in China, Series F-Inf. Sci., 50:3 (2007), 359–372 | MR | Zbl

[20] Zeng G., Yang Y., Han W., Fan S., “Word oriented cascade jump $\sigma$-LFSR”, AAECC 2009, LNCS, 5527, 2009, 127–136 | MR | Zbl

[21] Ghorpade S. R., Hasan S. U., Kumari M., “Primitive polynomials, Singer cycles, and word-oriented linear feedback shift registers”, Des. Codes Cryptogr., 58:2 (2011), 123–134 | DOI | MR | Zbl

[22] Ghorpade S. R., Ram S., “Block companion Singer cycles, primitive recursive vector sequences, and coprime polynomial pairs over finite fields”, Finite Fields and Their Appl., 17:5 (2011), 461–472 | DOI | MR | Zbl