A construction of skew LRS of maximal period over finite fields based on the defining tuples of factors
Matematičeskie voprosy kriptografii, Tome 5 (2014) no. 2, pp. 37-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $p$ be a prime number, $R=\mathrm{GF}(q)$ be a field of $q=p^r$ elements and $S=\mathrm{GF}(q^n)$ be an extension of $R$. Let $\breve S$ be the ring of all linear transformations of the space $_RS$. A linear recurrent sequence $v$ of order $m$ over the module $_{\breve S}S$ is said to be a skew linear recurrence sequence (skew LRS) of order $m$ over $S$. The period $T(v)$ of such sequence satisfies the inequality $T(v)\leq\tau=q^{mn}-1$. If $T(v)=\tau$ we call $v$ a skew LRS of maximal period (skew MP LRS). Here new classes of skew MP LRS based on the notion of the defining tuples of factors are constructed.
@article{MVK_2014_5_2_a4,
     author = {M. A. Goltvanitsa},
     title = {A construction of skew {LRS} of maximal period over finite fields based on the defining tuples of factors},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {37--46},
     year = {2014},
     volume = {5},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MVK_2014_5_2_a4/}
}
TY  - JOUR
AU  - M. A. Goltvanitsa
TI  - A construction of skew LRS of maximal period over finite fields based on the defining tuples of factors
JO  - Matematičeskie voprosy kriptografii
PY  - 2014
SP  - 37
EP  - 46
VL  - 5
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MVK_2014_5_2_a4/
LA  - en
ID  - MVK_2014_5_2_a4
ER  - 
%0 Journal Article
%A M. A. Goltvanitsa
%T A construction of skew LRS of maximal period over finite fields based on the defining tuples of factors
%J Matematičeskie voprosy kriptografii
%D 2014
%P 37-46
%V 5
%N 2
%U http://geodesic.mathdoc.fr/item/MVK_2014_5_2_a4/
%G en
%F MVK_2014_5_2_a4
M. A. Goltvanitsa. A construction of skew LRS of maximal period over finite fields based on the defining tuples of factors. Matematičeskie voprosy kriptografii, Tome 5 (2014) no. 2, pp. 37-46. http://geodesic.mathdoc.fr/item/MVK_2014_5_2_a4/

[1] Goltvanitsa M. A., Nechaev A. A., Zaitsev S. N., “Skew linear recurring sequences of maximal period over Galois rings”, Fund. Appl. Math., 17:3 (2011/2012), 5–23 (in Russian) | MR

[2] Goltvanitsa M. A., Nechaev A. A., Zaitsev S. N., “Skew LRS of maximal period over Galois rings”, Mat. Vopr. Kriptogr., 4:2 (2013), 59–72 | MR

[3] Lidl R., Niederreiter H., Finite Fields, Cambridge University Press, 1983 | MR | Zbl

[4] Kurakin V. L., Mikhalev A. V., Nechaev A. A., Tsypyschev V. N., “Linear and polylinear recurring sequences over abelian groups and modules”, J. Math. Sci., 102:6 (2000), 4598–4626 | MR | Zbl

[5] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, v. 2, Gelios ARV, Moscow, 2003 (in Russian)

[6] Tsaban B., Vishne U., “Efficient linear feedback shift registers with maximal period”, Finite fields and their Applications, 8:2 (2002), 256–267 | DOI | MR | Zbl

[7] Zeng G., Han W., He K. C., High efficiency feedback shift register: $\sigma$-LFSR, Cryptology ePrint Archive, Report 2007/114

[8] Zeng G., He K. C., Han W., “A trinomial type of $\sigma$-LFSR oriented toward software implementation”, Science in China. Series F-Inform. Sci., 50:3 (2007), 359–372 | MR | Zbl

[9] Zeng G., He K. C., Han W., “Word oriented cascade jump $\sigma$-LFSR”, AAECC 2009, Lect. Notes Comput. Sci., 5527, 2009, 127–136 | DOI | MR | Zbl

[10] Ghorpade S. R., Hasan S. U., Kumari M., “Primitive polynomials, Singer cycles, and word-oriented linear feedback shift registers”, Des. Codes Cryptogr., 58:2 (2011), 123–134 | DOI | MR | Zbl

[11] Sudhir R. Ghorpade, Samrith Ram, “Block companion Singer cycles, primitive recursive vector sequences, and coprime polynomial pairs over finite fields”, Finite Fields and their Appl., 17:5 (2011), 461–472 | DOI | MR | Zbl

[12] Kurakin V. L., “The Berlecamp-Massey algorithm over finite rings, modules and bimodules”, Discr. math. and appl., 8:5 (1998), 441–473 | MR | Zbl