Reconstruction of a linear recurrence of maximal period over a Galois ring of characteristic $p^3$ by its highest digital sequence
Matematičeskie voprosy kriptografii, Tome 5 (2014) no. 2, pp. 29-35
Cet article a éte moissonné depuis la source Math-Net.Ru
Sequences $w$ over a field $GF(q)$, $q=p^r$, $p>2$, obtained by highest digit sequence of linear recurrent sequences $u$ over a Galois ring $R=GR(q^3,p^3)$ in some digit set are considered. The conditions guaranteeing the uniqueness of reconstruction of $u$ given $w$ is studied.
@article{MVK_2014_5_2_a3,
author = {D. N. Bylkov},
title = {Reconstruction of a~linear recurrence of maximal period over {a~Galois} ring of characteristic $p^3$ by its highest digital sequence},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {29--35},
year = {2014},
volume = {5},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MVK_2014_5_2_a3/}
}
TY - JOUR AU - D. N. Bylkov TI - Reconstruction of a linear recurrence of maximal period over a Galois ring of characteristic $p^3$ by its highest digital sequence JO - Matematičeskie voprosy kriptografii PY - 2014 SP - 29 EP - 35 VL - 5 IS - 2 UR - http://geodesic.mathdoc.fr/item/MVK_2014_5_2_a3/ LA - en ID - MVK_2014_5_2_a3 ER -
%0 Journal Article %A D. N. Bylkov %T Reconstruction of a linear recurrence of maximal period over a Galois ring of characteristic $p^3$ by its highest digital sequence %J Matematičeskie voprosy kriptografii %D 2014 %P 29-35 %V 5 %N 2 %U http://geodesic.mathdoc.fr/item/MVK_2014_5_2_a3/ %G en %F MVK_2014_5_2_a3
D. N. Bylkov. Reconstruction of a linear recurrence of maximal period over a Galois ring of characteristic $p^3$ by its highest digital sequence. Matematičeskie voprosy kriptografii, Tome 5 (2014) no. 2, pp. 29-35. http://geodesic.mathdoc.fr/item/MVK_2014_5_2_a3/
[1] Mat. Sb., 184:3 (1993), 21–56 | DOI | MR | Zbl
[2] Kurakin V. L., Kuzmin A. S., Nechaev A. A., “Pseudo-random and polylinear sequences”, Trudy po diskretnoi matematike, 1, TVP, Moscow, 1997, 139–202 | MR | Zbl
[3] Kuzmin A. S., Nechaev A. A., “Linear recurring sequences over Galois rings”, Algebra Logic, 34 (1995), 87–100 | DOI | MR
[4] Usp. matem. nauk, 48:1 (1993), 167–168 | DOI | MR | Zbl
[5] Diskretnaya Matematika, 23:2 (2011), 3–31 | DOI | DOI | MR | Zbl
[6] Diskretnaya Matematika, 1:4 (1989), 123–139 | DOI | MR | Zbl | Zbl
[7] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over rings and modules”, J. Math. Sci. (New York), 76:6 (1995), 2793–2915 | DOI | MR | Zbl