Reconstruction of a linear recurrence of maximal period over a Galois ring of characteristic $p^3$ by its highest digital sequence
Matematičeskie voprosy kriptografii, Tome 5 (2014) no. 2, pp. 29-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sequences $w$ over a field $GF(q)$, $q=p^r$, $p>2$, obtained by highest digit sequence of linear recurrent sequences $u$ over a Galois ring $R=GR(q^3,p^3)$ in some digit set are considered. The conditions guaranteeing the uniqueness of reconstruction of $u$ given $w$ is studied.
@article{MVK_2014_5_2_a3,
     author = {D. N. Bylkov},
     title = {Reconstruction of a~linear recurrence of maximal period over {a~Galois} ring of characteristic $p^3$ by its highest digital sequence},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {29--35},
     year = {2014},
     volume = {5},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MVK_2014_5_2_a3/}
}
TY  - JOUR
AU  - D. N. Bylkov
TI  - Reconstruction of a linear recurrence of maximal period over a Galois ring of characteristic $p^3$ by its highest digital sequence
JO  - Matematičeskie voprosy kriptografii
PY  - 2014
SP  - 29
EP  - 35
VL  - 5
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MVK_2014_5_2_a3/
LA  - en
ID  - MVK_2014_5_2_a3
ER  - 
%0 Journal Article
%A D. N. Bylkov
%T Reconstruction of a linear recurrence of maximal period over a Galois ring of characteristic $p^3$ by its highest digital sequence
%J Matematičeskie voprosy kriptografii
%D 2014
%P 29-35
%V 5
%N 2
%U http://geodesic.mathdoc.fr/item/MVK_2014_5_2_a3/
%G en
%F MVK_2014_5_2_a3
D. N. Bylkov. Reconstruction of a linear recurrence of maximal period over a Galois ring of characteristic $p^3$ by its highest digital sequence. Matematičeskie voprosy kriptografii, Tome 5 (2014) no. 2, pp. 29-35. http://geodesic.mathdoc.fr/item/MVK_2014_5_2_a3/

[1] Mat. Sb., 184:3 (1993), 21–56 | DOI | MR | Zbl

[2] Kurakin V. L., Kuzmin A. S., Nechaev A. A., “Pseudo-random and polylinear sequences”, Trudy po diskretnoi matematike, 1, TVP, Moscow, 1997, 139–202 | MR | Zbl

[3] Kuzmin A. S., Nechaev A. A., “Linear recurring sequences over Galois rings”, Algebra Logic, 34 (1995), 87–100 | DOI | MR

[4] Usp. matem. nauk, 48:1 (1993), 167–168 | DOI | MR | Zbl

[5] Diskretnaya Matematika, 23:2 (2011), 3–31 | DOI | DOI | MR | Zbl

[6] Diskretnaya Matematika, 1:4 (1989), 123–139 | DOI | MR | Zbl | Zbl

[7] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over rings and modules”, J. Math. Sci. (New York), 76:6 (1995), 2793–2915 | DOI | MR | Zbl