@article{MVK_2014_5_2_a11,
author = {D. V. Pilshchikov},
title = {Estimation of the characteristics of time-memory-data tradeoff methods via generating functions of the number of particles and the total number of particles in the {Galton{\textendash}Watson} process},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {103--108},
year = {2014},
volume = {5},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MVK_2014_5_2_a11/}
}
TY - JOUR AU - D. V. Pilshchikov TI - Estimation of the characteristics of time-memory-data tradeoff methods via generating functions of the number of particles and the total number of particles in the Galton–Watson process JO - Matematičeskie voprosy kriptografii PY - 2014 SP - 103 EP - 108 VL - 5 IS - 2 UR - http://geodesic.mathdoc.fr/item/MVK_2014_5_2_a11/ LA - en ID - MVK_2014_5_2_a11 ER -
%0 Journal Article %A D. V. Pilshchikov %T Estimation of the characteristics of time-memory-data tradeoff methods via generating functions of the number of particles and the total number of particles in the Galton–Watson process %J Matematičeskie voprosy kriptografii %D 2014 %P 103-108 %V 5 %N 2 %U http://geodesic.mathdoc.fr/item/MVK_2014_5_2_a11/ %G en %F MVK_2014_5_2_a11
D. V. Pilshchikov. Estimation of the characteristics of time-memory-data tradeoff methods via generating functions of the number of particles and the total number of particles in the Galton–Watson process. Matematičeskie voprosy kriptografii, Tome 5 (2014) no. 2, pp. 103-108. http://geodesic.mathdoc.fr/item/MVK_2014_5_2_a11/
[1] Vatutin V. A., Sagitov S. M., “A decomposable critical branching process with two types of particles”, Proc. Steklov Inst. Math., 177, 1988, 1–19 | MR | Zbl
[2] Aliev S. A., Shurenkov V. M., “Transitional Phenomena and the Convergence of Galton–Watson Processes to Jirina Processes”, Theory Probab. Appl., 27:3 (1983), 472–485 | DOI | MR | Zbl
[3] Avoine G., Junod P., Oechslin P., Time-memory trade-offs: False alarm detection using checkpoints (extended version), Tech. Rep. LASEC-REPORT 2005-002, Swiss Federal Institute of Technology (EPFL), Security and Cryptography Laboratory (LASAC), Lausanne, Switzerland, September 2005 | MR
[4] Avoine G., Junod P., Oechslin P., “Characterization and improvement of Time-Memory Trade-Off based on perfect tables”, ACM Trans. Inf. Syst. Secur., 11:4, July (2008), Article No. 17, 22 pp. | DOI
[5] Borst J., Preneel B., Vandewalle J., “On the time-memory tradeoff between exhaustive key search and table precomputation”, Proc. 19th Symp. Inf. Theory in the Benelux, WIC, 1998, 111–118
[6] Matsumoto T., Kim I., Hara T., “Methods to reduce time and memory in time-memory tradeoff”, ISEC97-10, May 26, 1997
[7] Hellman M. E., “A cryptanalytic time-memory trade off”, IEEE Trans. Inf. Theory, IT-26 (1980), 401–406 | DOI | MR | Zbl
[8] Hong J., “The cost of false alarms in Hellman and rainbow tradeoffs”, Des. Codes Cryptogr., 57:3 (2010), 293–327 | DOI | MR | Zbl
[9] Hong J., Jeong K. C., Kwon E. Y., Lee I.-S., Ma D., “Variants of the distinguished point method for cryptanalytic time memory trade-off”, ISPEC 2008, LNCS, 4991, 2008, 131–145
[10] Kim I.-J., Matsumoto T., “Achieving higher success probability in time-memory trade-off cryptanalysis without increasing memory size”, IEICE Trans. Fundamentals, E82-A (1999), 123–129
[11] Ma D., Hong J., “Success probability of the Hellman trade-off”, Inf. Process. Lett., 109:7 (2008), 347–351 | MR
[12] Oechslin P., “Making a faster cryptanalytic time-memory trade-off”, CRYPTO' 03, LNCS, 2729, 2003, 617–630 | MR | Zbl
[13] Pakes A. G., “Some limit theorems for the total progeny of a branching process”, Adv. Appl. Probab., 3:1 (1971), 176–192 | DOI | MR | Zbl
[14] Standaert F. X., Rouvroy G., Quisquater J. J., Legat J. D., “A time-memory tradeoff using distinguished points: New analysis FPGA results”, Proc. CHES 2002, LNCS, 2523, 2002, 596–611