On an asymptotical property of spheres in the discrete spaces of large dimension
Matematičeskie voprosy kriptografii, Tome 5 (2014) no. 1, pp. 73-83 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study an asymptotic (as $m\to\infty$) property of sets in $m$-dimensional linear spaces $K^m$ over the finite field $K$. This property is used in the conditions of Poisson type limit theorems for the number of solutions of systems of random linear equations or random inclusions over finite field. It is shown that the spheres in $K^m$ (with respect to the Hamming distance) possess this property for $m\to\infty$ if the dependence of their radii on $m$ guarantees the unbounded growth of the numbers of their elements.
@article{MVK_2014_5_1_a3,
     author = {V. A. Kopytcev and V. G. Mikhailov},
     title = {On an asymptotical property of spheres in the discrete spaces of large dimension},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {73--83},
     year = {2014},
     volume = {5},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2014_5_1_a3/}
}
TY  - JOUR
AU  - V. A. Kopytcev
AU  - V. G. Mikhailov
TI  - On an asymptotical property of spheres in the discrete spaces of large dimension
JO  - Matematičeskie voprosy kriptografii
PY  - 2014
SP  - 73
EP  - 83
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MVK_2014_5_1_a3/
LA  - ru
ID  - MVK_2014_5_1_a3
ER  - 
%0 Journal Article
%A V. A. Kopytcev
%A V. G. Mikhailov
%T On an asymptotical property of spheres in the discrete spaces of large dimension
%J Matematičeskie voprosy kriptografii
%D 2014
%P 73-83
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/MVK_2014_5_1_a3/
%G ru
%F MVK_2014_5_1_a3
V. A. Kopytcev; V. G. Mikhailov. On an asymptotical property of spheres in the discrete spaces of large dimension. Matematičeskie voprosy kriptografii, Tome 5 (2014) no. 1, pp. 73-83. http://geodesic.mathdoc.fr/item/MVK_2014_5_1_a3/

[1] Kopyttsev V. A., Mikhailov V. G., “Teoremy puassonovskogo tipa dlya chisla spetsialnykh reshenii sluchainogo lineinogo vklyucheniya”, Diskretnaya matematika, 22:2 (2010), 3–21 | DOI | MR | Zbl

[2] Kopyttsev V. A., Mikhailov V. G., “Teoremy puassonovskogo tipa dlya chisla reshenii sluchainykh vklyuchenii”, Matematicheskie voprosy kriptografii, 1:4 (2010), 63–84

[3] Kopyttsev V. A., Mikhailov V. G., “O raspredelenii chisel reshenii sluchainykh vklyuchenii”, Matematicheskie voprosy kriptografii, 2:2 (2011), 55–80

[4] Mikhailov V. G., “Predelnaya teorema dlya chisla nekollinearnykh reshenii sistemy sluchainykh uravnenii spetsialnogo vida”, Diskretnaya matematika, 13:3 (2001), 81–90 | DOI | MR | Zbl

[5] Mikhailov V. G., “Predelnye teoremy dlya chisla tochek sluchainogo lineinogo podprostranstva, popavshikh v zadannoe mnozhestvo”, Diskretnaya matematika, 15:2 (2003), 128–157 | DOI | MR | Zbl

[6] Mikhailov V. G., “Predelnye teoremy dlya chisla reshenii sistemy sluchainykh lineinykh uravnenii, popavshikh v zadannoe mnozhestvo”, Diskretnaya matematika, 19:1 (2007), 17–26 | DOI | MR | Zbl

[7] Kopyttsev V. A., Mikhailov V. G., “Usloviya skhodimosti k raspredeleniyu Puassona dlya chisel reshenii sluchainykh vklyuchenii”, Matematicheskie voprosy kriptografii, 3:3 (2012), 35–55

[8] Kopyttsev V. A., Mikhailov V. G., “Predelnye teoremy puassonovskogo tipa dlya obobschennogo lineinogo vklyucheniya”, Diskretnaya matematika, 24:3 (2012), 108–121 | DOI | MR | Zbl

[9] Kopyttsev V. A., Mikhailov V. G., “Ob odnom asimptoticheskom svoistve sfer v diskretnykh prostranstvakh bolshoi razmernosti”, Obozr. prikl. i promyshl. matem., 18:5 (2011), 786

[10] Kopyttsev V. A., “O chisle reshenii sistem lineinykh bulevykh uravnenii v mnozhestve vektorov, obladayuschikh zadannym chislom edinits”, Diskretnaya matematika, 14:4 (2002), 87–109 | DOI | MR | Zbl

[11] Kopyttsev V. A., “O chisle reshenii sistemy sluchainykh lineinykh uravnenii”, Diskretnaya matematika, 18:1 (2006), 40–62 | DOI | MR | Zbl

[12] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 1, Mir, M., 1984, 528 pp. | MR | Zbl