Constructing pseudorandom sequences by means of $2$-linear shift register
Matematičeskie voprosy kriptografii, Tome 5 (2014) no. 1, pp. 39-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe the periodicity properties for almost all $2$-nobreakdash-linear recurrent sequences generated by $2$-linear shift register with identical connection polynomials of maximal period. A class of self-control nonlinear functions are suggested such that the existence of maximally possible cycles in a transition graph of states is guaranteed. Linear output functions preserving the period of sequence are described.
@article{MVK_2014_5_1_a2,
     author = {O. A. Kozlitin},
     title = {Constructing pseudorandom sequences by means of $2$-linear shift register},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {39--72},
     year = {2014},
     volume = {5},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2014_5_1_a2/}
}
TY  - JOUR
AU  - O. A. Kozlitin
TI  - Constructing pseudorandom sequences by means of $2$-linear shift register
JO  - Matematičeskie voprosy kriptografii
PY  - 2014
SP  - 39
EP  - 72
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MVK_2014_5_1_a2/
LA  - ru
ID  - MVK_2014_5_1_a2
ER  - 
%0 Journal Article
%A O. A. Kozlitin
%T Constructing pseudorandom sequences by means of $2$-linear shift register
%J Matematičeskie voprosy kriptografii
%D 2014
%P 39-72
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/MVK_2014_5_1_a2/
%G ru
%F MVK_2014_5_1_a2
O. A. Kozlitin. Constructing pseudorandom sequences by means of $2$-linear shift register. Matematičeskie voprosy kriptografii, Tome 5 (2014) no. 1, pp. 39-72. http://geodesic.mathdoc.fr/item/MVK_2014_5_1_a2/

[1] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, Gelios, M., 2003, 749 pp.

[2] Elizarov V. P., Konechnye koltsa, Gelios, M., 2006, 304 pp.

[3] Kamlovskii O. V., “Kolichestvo razlichnykh multigramm v lineinykh rekurrentnykh posledovatelnostyakh nad koltsami Galua”, Matematicheskie voprosy kriptografii, 4:3 (2013), 49–82

[4] Kozlitin O. A., “2-lineinyi registr sdviga nad koltsom Galua chetnoi kharakteristiki”, Matematicheskie voprosy kriptografii, 3:2 (2012), 27–61

[5] Kozlitin O. A., “Parallelnaya dekompozitsiya neavtonomnykh 2-lineinykh registrov sdviga”, Matematicheskie voprosy kriptografii, 2:3 (2011), 5–29

[6] Kozlitin O. A., “Periodicheskie svoistva prosteishego 2-lineinogo registra sdviga”, Diskretn. matem., 19:3 (2007), 51–78 | DOI | MR | Zbl

[7] Kozlitin O. A., “Svoistva vykhodnoi posledovatelnosti prosteishego samoupravlyaemogo 2-lineinogo registra sdviga”, Diskretnaya matematika, 19:4 (2007), 70–96 | DOI | MR | Zbl

[8] Mikhailov D. A., “Unitarnye polilineinye registry sdviga i ikh periody”, Diskretnaya matematika, 14:1 (2002), 30–59 | DOI | MR | Zbl

[9] Mikhalev A. V., Nechaev A. A., “Tsiklovye tipy semeistv polilineinykh rekurrent i datchiki psevdosluchainykh chisel”, Matematicheskie voprosy kriptografii, 5:1 (2014), 95–125

[10] Nechaev A. A., “Mnogomernye registry sdviga i slozhnost multiposledovatelnostei”, Trudy po diskretnoi matematike, 6, Fizmatlit, M., 2003, 150–165

[11] Nechaev A. A., “Tsiklovye tipy lineinykh podstanovok nad konechnymi kommutativnymi koltsami”, Matematicheskii sbornik, 184:3 (1993), 21–56 | MR | Zbl

[12] Sachkov V. N., Vvedenie v kombinatornye metody diskretnoi matematiki, Nauka, M., 1982, 384 pp. | MR | Zbl

[13] Pogorelov B. A., Sachkov V. N. (red.), Slovar kriptograficheskikh terminov, MTsNMO, M., 2006, 94 pp.

[14] Fomichev V. M., Diskretnaya matematika i kriptologiya, Dialog-MIFI, M., 2003, 397 pp.

[15] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over rings and modules”, J. of Math. Sciences, 76:6 (1995), 2793–2915 | DOI | MR | Zbl

[16] McDonald B. R., Finite rings with identity, Dekker, New York, 1974, 429 pp. | MR | Zbl

[17] Nomura T., Fukuda A., “Linear recurring planes and two-dimensional cyclic codes”, Electronic Commun. Japan, 54:3 (1971), 23–30 | MR

[18] Sakata S., “Extension of the Berlekamp–Massey algorithm to $N$ dimensions”, Inform. and Comput., 84:2 (1990), 207–239 | DOI | MR | Zbl

[19] http://en.wikipedia.org/wiki/Salsa20