Statistical characteristics of weight spectra of random linear codes over $\mathrm{GF}(p)$
Matematičeskie voprosy kriptografii, Tome 5 (2014) no. 1, pp. 27-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a random uniform subcode of fixed linear code over the finite field $\mathbf F_p$ its weight spectrum is considered. Formulas for the first two moments of the weight spectrum elements and estimates for the minimal nonzero weight distribution of subcode elements are derived in terms of weight spectrum of the code. Formulas for the first two moments and the weight distribution of sum of two independent random vectors having fixed weights are given also.
@article{MVK_2014_5_1_a1,
     author = {A. M. Zubkov and V. I. Kruglov},
     title = {Statistical characteristics of weight spectra of random linear codes over~$\mathrm{GF}(p)$},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {27--38},
     year = {2014},
     volume = {5},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2014_5_1_a1/}
}
TY  - JOUR
AU  - A. M. Zubkov
AU  - V. I. Kruglov
TI  - Statistical characteristics of weight spectra of random linear codes over $\mathrm{GF}(p)$
JO  - Matematičeskie voprosy kriptografii
PY  - 2014
SP  - 27
EP  - 38
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MVK_2014_5_1_a1/
LA  - ru
ID  - MVK_2014_5_1_a1
ER  - 
%0 Journal Article
%A A. M. Zubkov
%A V. I. Kruglov
%T Statistical characteristics of weight spectra of random linear codes over $\mathrm{GF}(p)$
%J Matematičeskie voprosy kriptografii
%D 2014
%P 27-38
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/MVK_2014_5_1_a1/
%G ru
%F MVK_2014_5_1_a1
A. M. Zubkov; V. I. Kruglov. Statistical characteristics of weight spectra of random linear codes over $\mathrm{GF}(p)$. Matematičeskie voprosy kriptografii, Tome 5 (2014) no. 1, pp. 27-38. http://geodesic.mathdoc.fr/item/MVK_2014_5_1_a1/

[1] Zubkov A. M., Kruglov V. I., “Momentnye kharakteristiki vesov vektorov v sluchainykh dvoichnykh lineinykh kodakh”, Matematicheskie voprosy kriptografii, 3:4 (2012), 55–70

[2] Kopyttsev V. A., “O chisle reshenii sistemy sluchainykh lineinykh uravnenii v mnozhestve vektorov spetsialnogo vida”, Diskretnaya matematika, 18:1 (2006), 40–62 | DOI | MR | Zbl

[3] Kopyttsev V. A., Mikhailov V. G., “Teoremy puassonovskogo tipa dlya chisla spetsialnykh reshenii sluchainogo lineinogo vklyucheniya”, Diskretnaya matematika, 22:2 (2010), 3–21 | DOI | MR | Zbl

[4] Mak-Vilyams F. Dzh., Sloen N. Dzh. A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, M., 1979

[5] Mikhailov V. G., “Predelnye teoremy dlya chisla tochek sluchainogo lineinogo podprostranstva, popavshikh v zadannoe mnozhestvo”, Diskretnaya matematika, 15:2 (2003), 128–137 | DOI | MR | Zbl

[6] Mikhailov V. G., “Predelnye teoremy dlya chisla reshenii sistemy sluchainykh lineinykh uravnenii, popavshikh v zadannoe mnozhestvo”, Diskretnaya matematika, 19:1 (2007), 17–26 | DOI | MR | Zbl

[7] Sachkov V. N., Vvedenie v kombinatornye metody diskretnoi matematiki, Nauka, M., 1982 | MR | Zbl

[8] Kholl M., Kombinatorika, Mir, M., 1970 | MR

[9] Berson T., “Failure of the McEliece public-key cryptosystem under message-resend and related-message attack”, CRYPTO 1997, Lect. Notes Comput. Sci., 1294, 1997, 213–220 | Zbl

[10] McEliece R. J., A public-key cryptosystem based on algebraic coding theory, Jet Propulsion Lab. DSN Progress Report 42-44, URL: , 1978 http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF

[11] Özen İ., Tekin E., “Moments of the support weight distribution of linear codes”, Des., Codes Cryptogr., 67 (2013), 187–196 | DOI | MR | Zbl