Transversals in splitted Latin squares of even order
Matematičeskie voprosy kriptografii, Tome 5 (2014) no. 1, pp. 5-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the splitted Latin squares, i.e. Latin squares of order $2n$ with elements from $\{0,\ldots,2n-1\}$ such that after reducing modulo $n$ we obtain $2n\times2n$-matrix consisting of four Latin squares of order $n$. The set of all transversals of splitted Latin square is described by means of $2$-balansed multisets of entries of one of Latin squares of order $n$ mentioned above. A quick algorithm of construction (after some preliminary work) the set of all transversals for any splitted Latin square of order $2n$ corresponding to an arbitrary set of four Latin squares of order $n$ is described.
@article{MVK_2014_5_1_a0,
     author = {V. V. Borisenko},
     title = {Transversals in splitted {Latin} squares of even order},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {5--25},
     year = {2014},
     volume = {5},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2014_5_1_a0/}
}
TY  - JOUR
AU  - V. V. Borisenko
TI  - Transversals in splitted Latin squares of even order
JO  - Matematičeskie voprosy kriptografii
PY  - 2014
SP  - 5
EP  - 25
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MVK_2014_5_1_a0/
LA  - ru
ID  - MVK_2014_5_1_a0
ER  - 
%0 Journal Article
%A V. V. Borisenko
%T Transversals in splitted Latin squares of even order
%J Matematičeskie voprosy kriptografii
%D 2014
%P 5-25
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/MVK_2014_5_1_a0/
%G ru
%F MVK_2014_5_1_a0
V. V. Borisenko. Transversals in splitted Latin squares of even order. Matematičeskie voprosy kriptografii, Tome 5 (2014) no. 1, pp. 5-25. http://geodesic.mathdoc.fr/item/MVK_2014_5_1_a0/

[1] Sachkov V. N., Vvedenie v kombinatornye metody diskretnoi matematiki, MTsNMO, M., 2004

[2] Wanless I. M., “A generalisation of transversals for Latin squares”, Electron. J. Comb., 9 (2002), 12 | MR

[3] Wanless I. M., “Transversals in Latin squares”, Quasigroups and Related Systems, 15, Inst. of Mathematics, Academy of Sciences of Moldova, 2007, 169–190 | MR

[4] McKay B. D., Meynert A., Myrvold W. J., “Small Latin squares, quasigroups and loops”, J. Combin. Des., 15:2 (2007), 98–119 | DOI | MR | Zbl