A modification of an algorithm for estimating the cardinality of integers with no more than three prime divisors
Matematičeskie voprosy kriptografii, Tome 4 (2013) no. 3, pp. 131-158 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We suggest fast computational methods for some generalizations of the Dickman function used to estimate the cardinality of the set of integers in an interval having no more than three prime divisors.
@article{MVK_2013_4_3_a6,
     author = {A. S. Rybakov},
     title = {A modification of an algorithm for estimating the cardinality of integers with no more than three prime divisors},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {131--158},
     year = {2013},
     volume = {4},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2013_4_3_a6/}
}
TY  - JOUR
AU  - A. S. Rybakov
TI  - A modification of an algorithm for estimating the cardinality of integers with no more than three prime divisors
JO  - Matematičeskie voprosy kriptografii
PY  - 2013
SP  - 131
EP  - 158
VL  - 4
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2013_4_3_a6/
LA  - ru
ID  - MVK_2013_4_3_a6
ER  - 
%0 Journal Article
%A A. S. Rybakov
%T A modification of an algorithm for estimating the cardinality of integers with no more than three prime divisors
%J Matematičeskie voprosy kriptografii
%D 2013
%P 131-158
%V 4
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2013_4_3_a6/
%G ru
%F MVK_2013_4_3_a6
A. S. Rybakov. A modification of an algorithm for estimating the cardinality of integers with no more than three prime divisors. Matematičeskie voprosy kriptografii, Tome 4 (2013) no. 3, pp. 131-158. http://geodesic.mathdoc.fr/item/MVK_2013_4_3_a6/

[1] Korobov N. M., Teoretiko-chislovye metody v priblizhennom analize, MTsNMO, M., 2004 | MR

[2] Bach E., “The asymptotic behavior of a function occurring in the theory of primes”, J. Indian Math. Soc., 15 (1951), 25–32 | MR

[3] Bach E., Peralta R., “Asymptotic semismoothness probabilities”, Math. of Comput., 65 (1996), 1701–1715 | DOI | MR | Zbl

[4] Ekkelkamp W. H., On the amount of sieving in factorization methods, Ph. D. thesis, The Univ. of Leiden, 2010

[5] Knuth D. E., Pardo L. T., “Analysis of a simple factorization algorithm”, Theor. Comput. Sci., 3 (1976), 321–348 | DOI | MR

[6] Lambert R., Computational aspects of discrete logarithms, Ph. D. thesis., The Univ. of Waterloo, 1996