Combinatorial characterization of XL-layers
Matematičeskie voprosy kriptografii, Tome 4 (2013) no. 3, pp. 99-129 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider combinatorial and structural properties of an affine subgroup generated by key addition and linear layer, i.e. by all shifts and by the multiplication on a reducible matrix. In particular, we describe properties of orbital graphs of this subgroup.
@article{MVK_2013_4_3_a5,
     author = {B. A. Pogorelov and M. A. Pudovkina},
     title = {Combinatorial characterization of {XL-layers}},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {99--129},
     year = {2013},
     volume = {4},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2013_4_3_a5/}
}
TY  - JOUR
AU  - B. A. Pogorelov
AU  - M. A. Pudovkina
TI  - Combinatorial characterization of XL-layers
JO  - Matematičeskie voprosy kriptografii
PY  - 2013
SP  - 99
EP  - 129
VL  - 4
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2013_4_3_a5/
LA  - ru
ID  - MVK_2013_4_3_a5
ER  - 
%0 Journal Article
%A B. A. Pogorelov
%A M. A. Pudovkina
%T Combinatorial characterization of XL-layers
%J Matematičeskie voprosy kriptografii
%D 2013
%P 99-129
%V 4
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2013_4_3_a5/
%G ru
%F MVK_2013_4_3_a5
B. A. Pogorelov; M. A. Pudovkina. Combinatorial characterization of XL-layers. Matematičeskie voprosy kriptografii, Tome 4 (2013) no. 3, pp. 99-129. http://geodesic.mathdoc.fr/item/MVK_2013_4_3_a5/

[1] Pogorelov B. A., Osnovy teorii grupp podstanovok, M., 1986

[2] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, v. 2, Gelios ARV, M., 2003

[3] Godsil C., Royle G., Algebraic Graph Theory, Springer-Verlag, 2001 | MR | Zbl

[4] Pogorelov B. A., Pudovkina M. A., “Svoistva grafov orbitalov nadgrupp gruppy Dzhevonsa”, Matematicheskie voprosy kriptografii, 1:1 (2010), 55–83

[5] Pogorelov B. A., “Podmetriki metriki Khemminga i teorema A. A. Markova”, Trudy po diskretnoi matematike, 9, FIZMATLIT, M., 2006, 190–219

[6] Pogorelov B. A., Pudovkina M. A., “Podmetriki Khemminga i ikh gruppy izometrii”, Trudy po diskretnoi matematike, 11, no. 2, FIZMATLIT, M., 2008, 147–191

[7] Deza M., Deza E., Encyclopedia of Distances, Springer-Verlag, Berlin–Heidelberg, 2009 | MR

[8] Bannai E., Ito T., Algebraicheskaya kombinatorika, Mir, M., 1987 | MR

[9] Pogorelov B. A., Pudovkina M. A., “Naturalnye metriki i ikh svoistva. Ch. 1. Podmetriki i nadmetriki”, Matematicheskie voprosy kriptografii, 2:4 (2011), 49–74

[10] Pogorelov B. A., Pudovkina M. A., “Naturalnye metriki i ikh svoistva. Ch. 2. Sluchai metrik Khemminga”, Matematicheskie voprosy kriptografii, 3:1 (2012), 71–95

[11] Sachkov V. N., Tarakanov V. E., Kombinatorika neotritsatelnykh matrits, TVP, M., 2000 | MR | Zbl

[12] Choy J., Khoo K., “New applications of differential bounds of the SDS structure”, ISC' 08, 2008

[13] Kanda M., Moriai S., Aoki K., Ueda H., Takashima Y., Ohta K., Matsumoto T., “E2 – A New 128-bit Block Cipher”, IEICE Trans. Fund Spec. Sect. on Cryptography and Inf. Security, E83-A:1 (2000), 48–59 | MR

[14] Daemen J., Cipher and hash function design strategies based on linear and differential cryptanalysis, PhD, K. U. Leuven, 1995

[15] Glukhov M. M., “O rasseivayuschikh lineinykh preobrazovaniyakh dlya blochnykh shifrsistem”, Matematicheskie voprosy kriptografii, 2:2 (2011), 5–39