A class of functions with coordinate-dependent polynomiality over the ring $\mathbb Z_{2^m}$
Matematičeskie voprosy kriptografii, Tome 4 (2013) no. 3, pp. 21-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider class of functions over the residue ring $\mathbb Z_{2^m}$ generating the systems of equations such that given the first $i$ coordinates of unknowns the next ($i+1)^\mathrm{th}$ coordinates may be found as the solution of system of linear equations.
@article{MVK_2013_4_3_a2,
     author = {M. V. Zaec and V. G. Nikonov and F. B. Shishkov},
     title = {A class of functions with coordinate-dependent polynomiality over the ring~$\mathbb Z_{2^m}$},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {21--47},
     year = {2013},
     volume = {4},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2013_4_3_a2/}
}
TY  - JOUR
AU  - M. V. Zaec
AU  - V. G. Nikonov
AU  - F. B. Shishkov
TI  - A class of functions with coordinate-dependent polynomiality over the ring $\mathbb Z_{2^m}$
JO  - Matematičeskie voprosy kriptografii
PY  - 2013
SP  - 21
EP  - 47
VL  - 4
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2013_4_3_a2/
LA  - ru
ID  - MVK_2013_4_3_a2
ER  - 
%0 Journal Article
%A M. V. Zaec
%A V. G. Nikonov
%A F. B. Shishkov
%T A class of functions with coordinate-dependent polynomiality over the ring $\mathbb Z_{2^m}$
%J Matematičeskie voprosy kriptografii
%D 2013
%P 21-47
%V 4
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2013_4_3_a2/
%G ru
%F MVK_2013_4_3_a2
M. V. Zaec; V. G. Nikonov; F. B. Shishkov. A class of functions with coordinate-dependent polynomiality over the ring $\mathbb Z_{2^m}$. Matematičeskie voprosy kriptografii, Tome 4 (2013) no. 3, pp. 21-47. http://geodesic.mathdoc.fr/item/MVK_2013_4_3_a2/

[1] Glukhov M. M., Shishkov A. B., Matematicheskaya logika. Diskretnye funktsii. Teoriya algoritmov, Lan, M., 2012

[2] Mikhailov D. A., Nechaev A. A., “Reshenie sistemy polinomialnykh uravnenii nad koltsom Galua–Eizenshteina s pomoschyu kanonicheskoi sistemy obrazuyuschikh polinomialnogo ideala”, Diskretnaya matematika, 16:1 (2004), 21–51 | DOI | MR | Zbl

[3] Mikhailov D. A., “Reshenie nekotorykh klassov sistem polinomialnykh uravnenii nad konechnymi polyami i koltsami”, Trudy po diskretnoi matematike, 11, 2008, 125–146

[4] Nechaev A. A., “Polinomialnye preobrazovaniya konechnykh kommutativnykh lokalnykh kolets glavnykh idealov”, Matem. zametki, 27:6 (1980), 885–897 | MR | Zbl

[5] Anashin V., Khrennikov A., Applied Algebraic Dynamics, de Gruyter Expositions in Mathematics, 49, Walter de Gruyter, Berlin–New York, 2009 | DOI | MR | Zbl

[6] Anashin V. S., “Ravnomerno raspredelennye posledovatelnosti tselykh $p$-adicheskikh chisel”, Diskretnaya matematika, 14:4 (2002), 3–64 | DOI | MR | Zbl