@article{MVK_2013_4_3_a1,
author = {K. D. Zhukov},
title = {On a~generalization of the {Dujella} method},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {7--19},
year = {2013},
volume = {4},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MVK_2013_4_3_a1/}
}
K. D. Zhukov. On a generalization of the Dujella method. Matematičeskie voprosy kriptografii, Tome 4 (2013) no. 3, pp. 7-19. http://geodesic.mathdoc.fr/item/MVK_2013_4_3_a1/
[1] Bukhshtab A. A., Teoriya chisel, Prosveschenie, M., 1966 | MR | Zbl
[2] Khinchin A. Ya., Tsepnye drobi, Fizmatgiz, L., 1961
[3] Hinek M. J., Cryptanalysis of RSA and Its Variants, CRC Press, 2009 | MR
[4] Pogorelov B. A., Sachkov V. N., Slovar kriptograficheskikh terminov, MTsNMO, M., 2006
[5] Boneh D., Durfee G., “Cryptanalysis of RSA with private key $d$ less than $N^{0.292}$”, Advances in Cryptology, Proceedings of Eurocrypt' 99, LNCS, 1952, 1999, 1–11 | MR
[6] Wiener M. J., “Cryptanalysis of short RSA secret exponents”, IEEE Trans. Inform. Theory, 36 (1990), 553–558 | DOI | MR | Zbl
[7] Verheul E. R., van Tilborg H. C. A., “Cryptanalysis of “less short” RSA secret exponents”, Appl. Algebra Eng. Comm. Computing, 8 (1997), 425–435 | DOI | MR | Zbl
[8] Dujella A., “Continued fractions and RSA with small secret exponent”, Tatra Mt. Math. Publ., 29 (2004), 101–112 | MR | Zbl
[9] Dujella A., “A variant of Wiener's attack on RSA”, Computing, 85 (2009), 77–83 | DOI | MR | Zbl
[10] Weger B., “Cryptanalysis of RSA with small prime difference”, Appl. Algebra Eng. Comm. Computing, 13 (2002), 17–28 | DOI | MR | Zbl
[11] The GNU Multiple Precision Arithmetic Library, http://gmplib.org/
[12] The Multiple Precision Floating-Point Reliable Library, http://www.mpfr.org/