Skew LRS of maximal period over Galois rings
Matematičeskie voprosy kriptografii, Tome 4 (2013) no. 2, pp. 59-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $p$ be a prime number, $R=\mathrm{GR}(q^d,p^d)$ be a Galois ring with $q^d=p^{rd}$ elements and characteristic $p^d$. Denote by $S=\mathrm{GR}(q^{nd},p^d)$ a Galois extension of the ring $R$ of dimension $n$ and by $\breve S$ the ring of all linear transformations of the module $_RS$. A sequence $v$ over the ring $S$ satisfying the recursion $\forall i\in\mathbb N_0\colon v(i+m)=\psi_{m-1}(v(i+m-1))+\dots+\psi_0(v(i))$, $\psi_0,\dots,\psi_{m-1}\in\breve S$, is called a skew LRS over $S$ with a characteristic polynomial $\Psi(x)=x^m-\sum_{t=0}^{m-1}\psi_tx^t\in\breve S[x]$. We investigate the problem of construction the polynomials $\Psi$ generating LRS $v$ with the maximal possible period $\tau=(q^{mn}-1)p^{d-1}$.
@article{MVK_2013_4_2_a5,
     author = {M. A. Goltvanitsa and A. A. Nechaev and S. N. Zaitsev},
     title = {Skew {LRS} of maximal period over {Galois} rings},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {59--72},
     year = {2013},
     volume = {4},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MVK_2013_4_2_a5/}
}
TY  - JOUR
AU  - M. A. Goltvanitsa
AU  - A. A. Nechaev
AU  - S. N. Zaitsev
TI  - Skew LRS of maximal period over Galois rings
JO  - Matematičeskie voprosy kriptografii
PY  - 2013
SP  - 59
EP  - 72
VL  - 4
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MVK_2013_4_2_a5/
LA  - en
ID  - MVK_2013_4_2_a5
ER  - 
%0 Journal Article
%A M. A. Goltvanitsa
%A A. A. Nechaev
%A S. N. Zaitsev
%T Skew LRS of maximal period over Galois rings
%J Matematičeskie voprosy kriptografii
%D 2013
%P 59-72
%V 4
%N 2
%U http://geodesic.mathdoc.fr/item/MVK_2013_4_2_a5/
%G en
%F MVK_2013_4_2_a5
M. A. Goltvanitsa; A. A. Nechaev; S. N. Zaitsev. Skew LRS of maximal period over Galois rings. Matematičeskie voprosy kriptografii, Tome 4 (2013) no. 2, pp. 59-72. http://geodesic.mathdoc.fr/item/MVK_2013_4_2_a5/

[1] Math. USSR Sb., 20 (1973), 364–382 | DOI | MR | Zbl

[2] Mat. Sb., 184:3 (1993), 21–56 | DOI | MR | Zbl

[3] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over rings and modules”, J. Math. Sci., 76:6 (1995), 2793–2915 | DOI | MR | Zbl

[4] Kurakin V. L., Mikhalev A. V., Nechaev A. A, Tsypyschev V. N., “Linear and polylinear recurring sequences over Abelian groups and modules”, J. Math. Sci., 102:6 (2000), 4598–4626 | MR | Zbl

[5] Nechaev A. A., “Finite Rings with Applications”, Handbook of Algebra, v. 5, ed. Hazewinkel M., Elsevier B. V., 2008, 213–320 | DOI | MR | Zbl

[6] Lidl R., Niederreiter H., Finite Fields, Encyclopedia of Mathematics and its Applications, 20, Cambridge University Press, 1983 | MR | Zbl

[7] Tsaban B., Vishne U., “Efficient linear feedback shift registers with maximal period”, Finite Fields and Their Appl., 8:2 (2002), 256–267 | DOI | MR | Zbl

[8] Zeng G., Han W., He K. C., High efficiency feedback shift register: $\sigma$-LFSR, Cryptology ePrint Archive, Report 2007/114, 2007

[9] Zeng G., He K. C., Han W., “A trinomial type of $\sigma$-LFSR oriented toward software implementation”, Science in China Series F-Inf. Sci., 50:3 (2007), 359–372 | MR | Zbl

[10] Zeng G., He K. C., Han W., “Word oriented cascade jump $\sigma$-LFSR”, Lect. Notes Comput. Sci., 5527, eds. Bras-Amoros M., Hoholdt T., 2009, 127–136 | DOI | MR | Zbl

[11] Ghorpade S. R., Hasan S. U., Kumari M., “Primitive polynomials, Singer cycles, and word-oriented linear feedback shift registers”, Des., Codes Cryptogr., 58:2 (2011), 123–134 | DOI | MR | Zbl

[12] Ghorpade S. R., Ram S., “Block companion Singer cycles, primitive recursive vector sequences, and coprime polynomial pairs over finite fields”, Finite Fields Appl., 17:5 (2011), 461–472 | DOI | MR | Zbl

[13] J. Math. Sci., 187:2 (2012), 115–128 | DOI | MR | Zbl