Efficient implementation of the GOST R 34.10 digital signature scheme using modern approaches to elliptic curve scalar multiplication
Matematičeskie voprosy kriptografii, Tome 4 (2013) no. 2, pp. 47-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An approach to an efficient implementation of the Russian national digital signature scheme GOST R 34.10 in view of its new extensions is proposed. Modern algorithms for scalar multiplication and different representations of elliptic curves over prime finite fields are used. Results of numerical experiments and recommendations on the selection of parameters of algorithms are presented.
@article{MVK_2013_4_2_a4,
     author = {D. M. Dygin and S. V. Grebnev},
     title = {Efficient implementation of the {GOST~R~34.10} digital signature scheme using modern approaches to elliptic curve scalar multiplication},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {47--57},
     year = {2013},
     volume = {4},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MVK_2013_4_2_a4/}
}
TY  - JOUR
AU  - D. M. Dygin
AU  - S. V. Grebnev
TI  - Efficient implementation of the GOST R 34.10 digital signature scheme using modern approaches to elliptic curve scalar multiplication
JO  - Matematičeskie voprosy kriptografii
PY  - 2013
SP  - 47
EP  - 57
VL  - 4
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MVK_2013_4_2_a4/
LA  - en
ID  - MVK_2013_4_2_a4
ER  - 
%0 Journal Article
%A D. M. Dygin
%A S. V. Grebnev
%T Efficient implementation of the GOST R 34.10 digital signature scheme using modern approaches to elliptic curve scalar multiplication
%J Matematičeskie voprosy kriptografii
%D 2013
%P 47-57
%V 4
%N 2
%U http://geodesic.mathdoc.fr/item/MVK_2013_4_2_a4/
%G en
%F MVK_2013_4_2_a4
D. M. Dygin; S. V. Grebnev. Efficient implementation of the GOST R 34.10 digital signature scheme using modern approaches to elliptic curve scalar multiplication. Matematičeskie voprosy kriptografii, Tome 4 (2013) no. 2, pp. 47-57. http://geodesic.mathdoc.fr/item/MVK_2013_4_2_a4/

[1] Explicit-formulas Database, , 2012 http://hyperelliptic.org/EFD

[2] GOST R 34.10-2001. Cryptographic data security, Signature and verification processes of [electronic] digital signature, 2001 (in Russian)

[3] GOST R 34.10-____. Cryptographic data security, Signature and verification processes of [electronic] digital signature (draft, edition 1) , 2011 (in Russian) http://www.infotecs.ru/laws/gost/proj/gost3410.pdf

[4] GOST R 34.11-____. Cryptographic data security, Hash function (draft, edition 1) , 2011 (in Russian) http://www.infotecs.ru/laws/gost/proj/gost3411.pdf

[5] Bernstein D., Birkner P., Joye M., Lange T., Peters C., Twisted Edwards curves, , 2008 http://eprint.iacr.org/2008/013 | MR

[6] Bernstein D., Lange T., Inverted Edwards coordinates, , 2007 http://eprint.iacr.org/2007/410

[7] Doche C., Kohel D. R., Sica F., “Double-base number systems for multi-scalar multiplications”, Proc. EUROCRYPT 2009, Lect. Notes Comput. Sci., 5479, 2009, 502–519 | DOI | MR

[8] Joye M., Quisquater J.-J., “Hessian elliptic curves and side-channel attacks”, Proc. CHES 2001, Lect. Notes Comput. Sci., 2162, 2001, 402–410 | DOI | MR | Zbl

[9] Kalinin M., An Implementation of the GOST R 34.10. Digital signature scheme using novel algorithms of elliptic curve scalar multiplication, Diploma paper, Moscow State Univ., 2010, 50 pp. (in Russian)

[10] Longa P., Accelerating the scalar multiplication on elliptic curve cryptosystems over prime fields, , 2008 http://eprint.iacr.org/2008/100