On a class of permutation polynomials over rings of residues modulo $2^n$
Matematičeskie voprosy kriptografii, Tome 4 (2013) no. 2, pp. 5-15 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider mappings of the residue rings modulo $2^n$ representable as polynomials with rational coefficients. Conditions ensuring that such a polynomial define a permutation of a ring are described.
@article{MVK_2013_4_2_a0,
     author = {A. V. Akishin},
     title = {On a~class of permutation polynomials over rings of residues modulo~$2^n$},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {5--15},
     year = {2013},
     volume = {4},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2013_4_2_a0/}
}
TY  - JOUR
AU  - A. V. Akishin
TI  - On a class of permutation polynomials over rings of residues modulo $2^n$
JO  - Matematičeskie voprosy kriptografii
PY  - 2013
SP  - 5
EP  - 15
VL  - 4
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MVK_2013_4_2_a0/
LA  - ru
ID  - MVK_2013_4_2_a0
ER  - 
%0 Journal Article
%A A. V. Akishin
%T On a class of permutation polynomials over rings of residues modulo $2^n$
%J Matematičeskie voprosy kriptografii
%D 2013
%P 5-15
%V 4
%N 2
%U http://geodesic.mathdoc.fr/item/MVK_2013_4_2_a0/
%G ru
%F MVK_2013_4_2_a0
A. V. Akishin. On a class of permutation polynomials over rings of residues modulo $2^n$. Matematičeskie voprosy kriptografii, Tome 4 (2013) no. 2, pp. 5-15. http://geodesic.mathdoc.fr/item/MVK_2013_4_2_a0/

[1] Akishin A. V., “Nesovmestimye preobrazovaniya kolets glavnykh idealov”, Diskretnaya matematika, 19:1 (2007), 50–59 | DOI | MR | Zbl

[2] Anashin V. S., “Ravnomerno raspredelennye posledovatelnosti tselykh $p$-adicheskikh chisel”, Matematicheskie zametki, 55:2 (1994), 3–46 | MR | Zbl

[3] Anashin V. S., “Ravnomerno raspredelennye posledovatelnosti tselykh $p$-adicheskikh chisel”, Diskretnaya matematika, 14:4 (2002), 3–64 | DOI | MR | Zbl

[4] Glukhov M. M., “O chislovykh parametrakh, svyazannykh s zadaniem konechnykh grupp sistemami obrazuyuschikh elementov”, Trudy po diskretnoi matematike, 1, 1997, 43–66 | MR | Zbl

[5] Knut D., Iskusstvo programmirovaniya. Osnovnye algoritmy, v. 1, 3-e izd., Vilyams, M., 2001, 720 pp.

[6] Larin M. V., “Tranzitivnye polinomialnye preobrazovaniya kolets vychetov”, Diskretnaya matematika, 14:2 (2002), 20–32 | DOI | MR | Zbl

[7] Mullen G. L., Stevens H., “Polynomial functions (mod $m$)”, Acta Math. Hungarica, 44:3–4 (1984), 237–241 | DOI | MR | Zbl

[8] Rivest R. R., “Permutation polynomials modulo $2^w$”, Finite Fields and Their Appl., 7:2 (2001), 287–292 | DOI | MR | Zbl