Description of the set of permutations representable as a product of two permutations with fixed number of mobile points. II
Matematičeskie voprosy kriptografii, Tome 4 (2013) no. 1, pp. 87-109
Cet article a éte moissonné depuis la source Math-Net.Ru
We describe completely the structure of the set of $N$-element permutations representable as the product of two permutations with $q$ and $q+t$ mobile points correspondingly, $2\le t$, $2\le q\frac{N-t}2+1$.
@article{MVK_2013_4_1_a4,
author = {A. B. Pichkur},
title = {Description of the set of permutations representable as a~product of two permutations with fixed number of mobile {points.~II}},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {87--109},
year = {2013},
volume = {4},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MVK_2013_4_1_a4/}
}
TY - JOUR AU - A. B. Pichkur TI - Description of the set of permutations representable as a product of two permutations with fixed number of mobile points. II JO - Matematičeskie voprosy kriptografii PY - 2013 SP - 87 EP - 109 VL - 4 IS - 1 UR - http://geodesic.mathdoc.fr/item/MVK_2013_4_1_a4/ LA - ru ID - MVK_2013_4_1_a4 ER -
%0 Journal Article %A A. B. Pichkur %T Description of the set of permutations representable as a product of two permutations with fixed number of mobile points. II %J Matematičeskie voprosy kriptografii %D 2013 %P 87-109 %V 4 %N 1 %U http://geodesic.mathdoc.fr/item/MVK_2013_4_1_a4/ %G ru %F MVK_2013_4_1_a4
A. B. Pichkur. Description of the set of permutations representable as a product of two permutations with fixed number of mobile points. II. Matematičeskie voprosy kriptografii, Tome 4 (2013) no. 1, pp. 87-109. http://geodesic.mathdoc.fr/item/MVK_2013_4_1_a4/
[1] Pichkur A. B., “Opisanie klassa podstanovok, predstavimykh v vide proizvedeniya dvukh podstanovok s fiksirovannym chislom mobilnykh tochek”, Matematicheskie voprosy kriptografii, 3:2 (2012), 79–95