On the numbers of equivalent tuples sets in a sequence of independent random variables
Matematičeskie voprosy kriptografii, Tome 4 (2013) no. 1, pp. 77-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathbf X$ be a sequence of $n+s-1$ polynomial trials with $N$ outcomes. Limit joint distributions of the numbers of $r$-sets of equivalent $s$-tuples in $\mathbf X$ are proved. Two types of conditions on the parameters $n,N\to\infty$, $s$ are considered. Under the conditions of the first type the mean number of $s$-tuples with coinciding outcomes is bounded. Under the conditions of the second type the mean number of $s$-tuples without concidings is bounded.
@article{MVK_2013_4_1_a3,
     author = {V. G. Mihailov and A. M. Shoitov},
     title = {On the numbers of equivalent tuples sets in a~sequence of independent random variables},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {77--86},
     year = {2013},
     volume = {4},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2013_4_1_a3/}
}
TY  - JOUR
AU  - V. G. Mihailov
AU  - A. M. Shoitov
TI  - On the numbers of equivalent tuples sets in a sequence of independent random variables
JO  - Matematičeskie voprosy kriptografii
PY  - 2013
SP  - 77
EP  - 86
VL  - 4
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MVK_2013_4_1_a3/
LA  - ru
ID  - MVK_2013_4_1_a3
ER  - 
%0 Journal Article
%A V. G. Mihailov
%A A. M. Shoitov
%T On the numbers of equivalent tuples sets in a sequence of independent random variables
%J Matematičeskie voprosy kriptografii
%D 2013
%P 77-86
%V 4
%N 1
%U http://geodesic.mathdoc.fr/item/MVK_2013_4_1_a3/
%G ru
%F MVK_2013_4_1_a3
V. G. Mihailov; A. M. Shoitov. On the numbers of equivalent tuples sets in a sequence of independent random variables. Matematičeskie voprosy kriptografii, Tome 4 (2013) no. 1, pp. 77-86. http://geodesic.mathdoc.fr/item/MVK_2013_4_1_a3/

[1] Buravlev S. M., “Povtoreniya s tochnostyu do perestanovok v posledovatelnosti nezavisimykh ispytanii”, Diskretnaya matematika, 11:1 (1999), 53–75 | DOI | MR | Zbl

[2] Mikhailov V. G., Shoitov A. M., “Strukturnaya ekvivalentnost $s$-tsepochek v sluchainykh diskretnykh posledovatelnostyakh”, Diskretnaya matematika, 15:4 (2003), 7–34 | DOI | MR | Zbl

[3] Mikhailov V. G., “Ob asimptoticheskom povedenii veroyatnosti nalichiya v posledovatelnosti ekvivalentnykh tsepochek s netrivialnoi strukturoi”, Diskretnaya matematika, 20:4 (2008), 113–119 | DOI | MR | Zbl

[4] Mikhailov V. G., “Ob asimptoticheskikh svoistvakh raspredeleniya chisla par $H$-svyazannykh tsepochek”, Diskretnaya matematika, 14:3 (2002), 122–129 | DOI | MR | Zbl

[5] Shoitov A. M., “Puassonovskoe priblizhenie dlya chisla povtorenii znachenii diskretnoi funktsii ot tsepochek”, Diskretnaya matematika, 17:2 (2005), 56–69 | DOI | MR | Zbl

[6] Shoitov A. M., “Diskretnye predelnye raspredeleniya dlya chisla tsepochek s odinakovoi strukturoi v posledovatelnosti ravnoveroyatnykh ispytanii”, Obozrenie prikladnoi i promyshlennoi matematiki, 14:3 (2007), 474–484 | MR | Zbl

[7] Shoitov A. M., “Strukturno ekvivalentnye tsepochki v ravnoveroyatnoi polinomialnoi skheme”, Matematicheskie voprosy kriptografii, 3:3 (2012), 129–151