@article{MVK_2013_4_1_a2,
author = {G. I. Ivchenko and Yu. I. Medvedev and V. A. Mironova},
title = {Analysis of the spectrum of random symmetric {Boolean} functions},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {59--76},
year = {2013},
volume = {4},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MVK_2013_4_1_a2/}
}
TY - JOUR AU - G. I. Ivchenko AU - Yu. I. Medvedev AU - V. A. Mironova TI - Analysis of the spectrum of random symmetric Boolean functions JO - Matematičeskie voprosy kriptografii PY - 2013 SP - 59 EP - 76 VL - 4 IS - 1 UR - http://geodesic.mathdoc.fr/item/MVK_2013_4_1_a2/ LA - ru ID - MVK_2013_4_1_a2 ER -
G. I. Ivchenko; Yu. I. Medvedev; V. A. Mironova. Analysis of the spectrum of random symmetric Boolean functions. Matematičeskie voprosy kriptografii, Tome 4 (2013) no. 1, pp. 59-76. http://geodesic.mathdoc.fr/item/MVK_2013_4_1_a2/
[1] Canteaut A., Videau M., “Symmetric Boolean Function”, IEEE Trans. Inf. Theory, 51:8 (2005), 2791–2811 | DOI | MR
[2] Sarkar S., Maitra S., “Efficient search for symmetric Boolean functions under constraints on Walsh spectra values”, J. Comb. Math. and Comb. Comput., 68 (2009), 163–191 | MR | Zbl
[3] Mouffron M., “Balanced alternating and symmetric functions over finite sets”, Workshop on Boolean Functions: Cryptography and Applications (BFCA' 08), Copenhagen, Denmark, 2008, 27–44 | MR
[4] Segë G., Ortogonalnye mnogochleny, FIZMATLIT, M., 1962
[5] Mak-Vilyams F. Dzh., Sloen N. Dzh. A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, M., 1979
[6] Sidelnikov V. M., Teoriya kodirovaniya, FIZMATLIT, M., 2008
[7] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, Nauka, M., 1965
[8] Cusick Th. W., Stanica P., Cryptographic Boolean Functions and Applications, Elsevier/AP, Amsterdam etc., 2009 | MR | Zbl
[9] Savicky P., “On the bent Boolean functions that are symmetric”, European J. Comb., 15 (1994), 407–410 | DOI | MR | Zbl
[10] Khokhlov V. I., “Mnogochleny, ortogonalnye otnositelno polinomialnogo raspredeleniya, i faktorialno-stepennoi formalizm”, Teoriya veroyatnosti i eë primenenie, 46:3 (2001), 585–594 | DOI | MR | Zbl
[11] Khokhlov V. I., “Mnogochleny Ermita i mnogochleny Puassona–Sharle kak klassicheskie predely mnogochlenov Kravchuka”, Obozr. prikl. i promyshl. matem., 16:5 (2005), 937–940