Random substitutions with transformed cycles
Matematičeskie voprosy kriptografii, Tome 3 (2012) no. 4, pp. 127-150
Cet article a éte moissonné depuis la source Math-Net.Ru
Let for the cycles of a random substitution two types of transformations are defined: deterministic and stochastic. We obtain exact and asymptotic distributions for the numbers of nontransformed cycles and $r$-cycles, for the cardinalities of the transitivity domains defined by such cycles.
@article{MVK_2012_3_4_a5,
author = {V. N. Sachkov},
title = {Random substitutions with transformed cycles},
journal = {Matemati\v{c}eskie voprosy kriptografii},
pages = {127--150},
year = {2012},
volume = {3},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MVK_2012_3_4_a5/}
}
V. N. Sachkov. Random substitutions with transformed cycles. Matematičeskie voprosy kriptografii, Tome 3 (2012) no. 4, pp. 127-150. http://geodesic.mathdoc.fr/item/MVK_2012_3_4_a5/
[1] Kendall M., Styuart A., Teoriya raspredelenii, Nauka, M., 1966 | MR | Zbl
[2] Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Gostekhizdat, M., 1948 | MR
[3] Fikhtengolts G. M., Kurs matematicheskogo analiza, v. 2, Fizmatgiz, M., 1947
[4] Takács L., “A moment problem”, J. Austral. Math. Soc., 5:4 (1965), 487–490 | DOI | MR | Zbl
[5] Sachkov V. N., “Operator redutsirovaniya. I”, Trudy po diskretnoi matematike, 2, TVP, M., 1998, 282–295 | MR | Zbl
[6] Sachkov V. N., Kombinatornye metody diskretnoi matematiki, Nauka, M., 1977
[7] Sachkov V. N., Veroyatnostnye metody v kombinatornom analize, Nauka, M., 1978 | MR | Zbl
[8] Kuznetsov D. S., Spetsialnye funktsii, Vysshaya shkola, M., 1962 | Zbl