Structurally equivalent tuples in the equiprobable polynomial scheme
Matematičeskie voprosy kriptografii, Tome 3 (2012) no. 3, pp. 129-151 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $X_1,\dots,X_n$ be a sequence of independent random variables with the uniform distribution on the set $\{1,\dots,N\}$. We describe limit discrete distributions of the number of $k$-element sets consisting of structurally equivalent $s$-tuples for $N,n,s\to\infty$, $sN^{-1}\to\alpha\in(0,1)$, $n(N)_sN^{-s}\to\lambda\in(0,\infty)$ and arbitrary $k\geqslant2$. The proofs are based on the Chen–Stein method.
@article{MVK_2012_3_3_a6,
     author = {A. M. Shoitov},
     title = {Structurally equivalent tuples in the equiprobable polynomial scheme},
     journal = {Matemati\v{c}eskie voprosy kriptografii},
     pages = {129--151},
     year = {2012},
     volume = {3},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MVK_2012_3_3_a6/}
}
TY  - JOUR
AU  - A. M. Shoitov
TI  - Structurally equivalent tuples in the equiprobable polynomial scheme
JO  - Matematičeskie voprosy kriptografii
PY  - 2012
SP  - 129
EP  - 151
VL  - 3
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MVK_2012_3_3_a6/
LA  - ru
ID  - MVK_2012_3_3_a6
ER  - 
%0 Journal Article
%A A. M. Shoitov
%T Structurally equivalent tuples in the equiprobable polynomial scheme
%J Matematičeskie voprosy kriptografii
%D 2012
%P 129-151
%V 3
%N 3
%U http://geodesic.mathdoc.fr/item/MVK_2012_3_3_a6/
%G ru
%F MVK_2012_3_3_a6
A. M. Shoitov. Structurally equivalent tuples in the equiprobable polynomial scheme. Matematičeskie voprosy kriptografii, Tome 3 (2012) no. 3, pp. 129-151. http://geodesic.mathdoc.fr/item/MVK_2012_3_3_a6/

[1] Sachkov V. N., Vvedenie v kombinatornye metody diskretnoi matematiki, Nauka, M., 1982, 384 pp. | MR | Zbl

[2] Buravlev S. M., “Povtoreniya s tochnostyu do perestanovok v posledovatelnosti nezavisimykh ispytanii”, Diskretnaya matematika, 11:1 (1999), 53–75 | DOI | MR | Zbl

[3] Medvedev Yu. I., Ivchenko G. I., “Asimptoticheskie predstavleniya konechnykh raznostei ot stepennoi funktsii v proizvolnoi tochke”, Teoriya veroyatnostei i ee primeneniya, 10:1 (1965), 151–156 | MR | Zbl

[4] Mikhailov V. G., “Ob asimptoticheskikh svoistvakh raspredeleniya chisla par $\mathbf H$-svyazannykh tsepochek”, Diskretnaya matematika, 14:3 (2002), 122–129 | DOI | MR | Zbl

[5] Mikhailov V. G., “Ob asimptoticheskom povedenii veroyatnosti nalichiya v posledovatelnosti ekvivalentnykh tsepochek s netrivialnoi strukturoi”, Diskretnaya matematika, 20:4 (2008), 113–119 | DOI | MR | Zbl

[6] Mikhailov V. G., Shoitov A. M., “Strukturnaya ekvivalentnost $s$-tsepochek v sluchainykh diskretnykh posledovatelnostyakh”, Diskretnaya matematika, 15:4 (2003), 7–34 | DOI | MR | Zbl

[7] Shoitov A. M., “Predelnye raspredeleniya chisla naborov $\mathbf H$-ekvivalentnykh otrezkov v ravnoveroyatnoi polinomialnoi skheme serii”, Diskretnaya matematika, 14:1 (2002), 82–98 | DOI | MR | Zbl

[8] Shoitov A. M., “Puassonovskoe priblizhenie dlya chisla povtorenii znachenii diskretnoi funktsii ot tsepochek”, Diskretnaya matematika, 17:2 (2005), 56–69 | DOI | MR | Zbl

[9] Shoitov A. M., “Diskretnye predelnye raspredeleniya dlya chisla tsepochek s odinakovoi strukturoi v posledovatelnosti ravnoveroyatnykh ispytanii”, Obozrenie prikladnoi i promyshlennoi matematiki, 14:3 (2007), 474–484 | MR | Zbl

[10] Barbour A. D., Holst L., Janson S., Poisson Approximation, Oxford Univ. Press, Oxford, 1992, 277 pp. | MR | Zbl